動的に抽出下における歯冠修復および
補綴用金属材料の溶出と細胞毒性

佐野 裕子 武田 昭二

抄録：咬耗耗がおこる部位で使用される歯冠修復あるいは補綴用金属材料の細胞毒性を評価する目的で、タイプIV金合金、3種の鋳造用銀合金（金銀パラジウム合金、銀イジウム合金）、ニッケルクロム合金および純チタンを用いた抽出液中で240 rpmの旋回条件で7日間を通じて動的に抽出した。そして、抽出液を2週間で2週間内に均等に抽出して抽出溶液中の溶出金属量をしめ、その結果、タイプIV金合金、ニッケルクロム合金、チタンではいずれの抽出液においても細胞生存率はほぼ対照群に近い値であった。しかし、3種類の鋳造用銀合金では抽出液の種類によって細胞生存率が異なった。ときに、MEMおよび0.4％アルプミン含有MEM中の鋳造用銀スズ合金で著しい細胞生存率の減少が認められた。一方、摩耗粉についてはチタンを除くすべての合金において細胞生存率の減少が認められた。また、タイプIV金合金では抽出液の種類によって摩耗粉の細胞毒性が異なり、0.4％アルプミン含有MEMで細胞毒性が減弱した。各合金からはそれぞれの組成元素の溶出が認められた。ときに、タイプIV金合金および鋳造用銀パラジウム合金からは選択的な鈍の溶出が、鋳造用銀スズ合金および銀イジウム合金および亜鉛の著しい溶出が認められた。また、ニッケルクロム合金からはニッケルが溶出した。しかし、チタンからのチタンの溶出は検出できなかった。

以上の結果から、動的に抽出法において抽出液の種類は合金からの組成元素の溶出挙動に影響し、溶出をより多く摩耗粉の細胞毒性にも影響することが明らかとなった。この結果は、咬耗耗を受ける部位で使用される歯冠修復および補綴用金属材料のin vitroでの細胞毒性評価の実施に当たって有益な示唆を与えるものと考える。

緒 言

In vitroにおいて歯科材料の細胞毒性を評価する場合には、材料を細胞に作用させる方法として直接接触法、加热などの物理的な介在させる方法および抽出法がある。われわれは咬耗耗を受けるような部位で使用される歯冠修復および補綴用金属材料の試験法として動的負荷がある抽出法が有効であることを報告してきた12。堤ら3も歯冠補綴用材料について様々な抽出法の比較をおこない、動的抽出法が有効であったと述べている。しかし、動的抽出を実施するに当たっての抽出液の選択あるいは摩耗粉の細胞毒性評価法などについては未だ十分に解明されているとはいえないとこの考えがある。

そこで、著者たちは歯冠修復および補綴に用いられる金属材料を取りあげ、動的抽出をおこなう際の抽出液の影響について検討を加えた。また、摩耗粉の細胞毒性をもしぼべた。

実験材料と方法

市販の歯冠修復および補綴用材料の中から6種類の材料、すなわちタイプIV金合金（キャスティングゴールド、石福金属、東京）を、また
Table 1 Casting metals used in this experiment

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Name and manufacturer</th>
<th>Au</th>
<th>Ag</th>
<th>Pd</th>
<th>Pt</th>
<th>Cu</th>
<th>Sn</th>
<th>In</th>
<th>Zn</th>
<th>Ni</th>
<th>Cr</th>
<th>Ti</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type IV gold alloy</td>
<td>Casting gold Ishifuku</td>
<td>67.3</td>
<td>10.9</td>
<td>3.5</td>
<td>4.2</td>
<td>12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag-Pd-Cu-Au alloy</td>
<td>Cast well M.C. GC</td>
<td>12.0</td>
<td>45.0</td>
<td>20.0</td>
<td>18.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.0</td>
</tr>
<tr>
<td>Ag-Sn alloy</td>
<td>Miro silver GC</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag-In alloy</td>
<td>Disk alloy Ishifuku</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni-Cr alloy</td>
<td>Suncolium US Sankin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>86.0</td>
<td>10.0</td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Ti</td>
<td>JIS No. 2 Toshinyoko</td>
<td></td>
<td>99.5</td>
</tr>
</tbody>
</table>

* Adapted from manufacturers’ data

Table 2 Extraction solutions used in this experiment

<table>
<thead>
<tr>
<th>Extraction solution</th>
<th>Distilled water</th>
<th>Ringer’s solution</th>
<th>PBS(−)</th>
<th>MEM</th>
<th>MEM + 0.4% albumin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td>8,600</td>
<td>8,000</td>
<td>6,800</td>
<td></td>
<td>6,800</td>
</tr>
<tr>
<td>KCl</td>
<td>300</td>
<td>400</td>
<td>400</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>300</td>
<td></td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Na₂HPO₄·7H₂O</td>
<td></td>
<td>2,160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td></td>
<td></td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>MgCl₂·6H₂O</td>
<td></td>
<td></td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>2,000</td>
<td></td>
<td>2,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaH₄P₂O₇·2H₂O</td>
<td>150</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>1,000</td>
<td></td>
<td>1,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amino acid</td>
<td>801</td>
<td></td>
<td>801</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin</td>
<td>8.1</td>
<td></td>
<td>8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bovine albumin</td>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(mg/ml)

鋳造用銀合金として、鋳造用銀パラジウム合金（キャストウエル M.C., GC, 東京）、鋳造用銀スズ合金（ミロシルバー, GC, 東京）および鋳造用イジウム合金（ディスクアロイ, 石福金属, 東京）の 3 種合金を、そして鋳造用ニッケルクロム合金（サンコリウム US, 三金, 東京）および純チタン（JIS 2 種、東伸洋行, 新潟, 以下チタンとする）をそれぞれ選んだ（Table 1）。各金属材料を長さ 10 mm × 幅 10 mm × 厚さ 2 mm の板状に鋳造成形し、JIS # 800 のエリーベーパーで仕上げ、試料とした。

実験方法を Fig. 1 に示した。直径 3 mm のアルミナ球（SSA999W, ニッカトー, 大阪）をしきつめた 30 ml 容量の試料瓶に試料を入れ、180°C で 2 時間乾燥滅菌をおこなった。その後、Table 2 に示した蒸留水, リンガル液（大塚製薬, 東京）, リン酸緩衝液 (PBS(−))(阪大微研, 吹田), Eagle 処方の培養液 (MEM)（阪大微研, 吹田）および 0.4% アルブミン (Sigma Chemical Co., St. Louis, MO.) 含有
MEM のいずれかの抽出液を加えた。動的抽出
は、37°C で 240 rpm の旋回速度で、7 日間お
こなった。このようにして得た抽出液を 0.22
μm のメンプランフィルターによって濾過し、
濾液と摩耗粉とに分離した。
細胞毒性試験の概略を Fig. 2 に示した。細
胞毒性試験には、マウス 結合因来の L-929
細胞を用いた。5v/v % のウシ胎児血清（Flow
Laboratories Ltd., Ayrshire, UK）を添加し、
MEM にて 1×10^6 cells/ml の細胞浮遊液を作製し、96ウェルのマルチプレートに各ウェル
当たり 200 μl ずつ分注し、37°C の 5 % 炭酸ガス-95 % 空気
中で培養した。24時間後に、濾液を MEM にて 2 倍および 4 倍に希釈した
溶液と交換し、引き続いて 4 時間培養した。4 時
間後に PBS (−) で 2 回洗浄後、5v/v % ウシ胎
児血清を添加した MEM と交換して、24時間
および 48時間の細胞回復度のための培養を続けた。一方、摩耗粉の細胞毒性については、まず、
2×10^4 cells/ml の細胞浮遊液を作製し、96ウェル
のマルチプレートに各ウェル当たり 200 μl
ずつ分注し、37°C の 5 % 炭酸ガス-95 % 空気
中で 24時間培養した。その後、5v/v % ウシ胎
児血清を添加した MEM にて摩耗粉が 1.00
mg/ml, 0.50 mg/ml および 0.25 mg/ml の 3
段階の濃度になるように加えてそれぞれ 5 日間
作用させた。
細胞生存率の判定は、ニュートラルレッド
法 3) によった。すなわち、培養後に 50 μg/ml
のニュートラルレッドを含む培養液 200 μl と
液交換し、さらに、37°C で 3 時間培養した。そ
の後、PBS (−) で 3 回洗浄し、1 % 酢酸-50 %
エタノール-49 % 蒸留水溶液で脱色し、マイク
ロプレートリーダー（3550, バイオラッド, 東
京）にて 540 nm の吸光度を対照群の吸光度
de し百分率で表わした。
また、濾液中の各溶出元素について原子吸光
光度計（180-70, 日立, 東京）にて測定した。
なお、チタンについてはグラファイト アトマイ
ズ法によった。
実験結果
各合金を動的抽出して得た濾液を細胞に作
用させた場合、細胞生存率におよぼす影響を
Figs. 3〜8 に示した。タイプIV合金では、いず
れの濾液を作用させた場合も、細胞生存率は 80
% 以上を示した。蒸留水で抽出した場合に 2 倍
希釈で細胞生存率の減少が認められた。しか
し、48時間の細胞回復後では対照群に近い値を
示した。また、濾液の希釈で細胞生存率に顕
著な相違は認められなかった。
鍛造用合金 "バリウム" 合金においては、0.4
% アルミニウム含有 MEM を除いて 4 種類の濾
液とも細胞生存率は 80 % 以上を示した。一方、
Fig. 3 Effect of Type IV gold alloy filtrate on cell viability.

Fig. 4 Effect of Ag–Pd–Cu–Au alloy filtrate on cell viability.

Fig. 5 Effect of Ag–Sn alloy filtrate on cell viability.
Fig. 6 Effect of Ag-In alloy filtrate on cell viability.

Fig. 7 Effect of Ni-Cr alloy filtrate on cell viability.

Fig. 8 Effect of Ti filtrate on cell viability.
2倍希釈の0.4％アルブミン含有MEMでは、細胞生存率は平均50.8％を示した。しかし、細胞回復後の培養時間が長くなると細胞生存率が上昇する傾向が認められ、48時間の細胞回復後では対照群と比較して差がない段階になった。また、濾液の希釈度に関しても0.4％アルブミン含有MEMを除いて細胞生存率に顕著な相違は認められなかった。

飼造用銀ズス合金では、タイプIV金合金および飼造用金銀パラジウム合金とは異なった細胞生存率を示した。すなわち、2倍希釈のPBS（一）においてのみ細胞生存率は対照群に近い値を示した。しかし、他の2倍希釈濾液では細胞生存率が減少した。最も低い細胞生存率を示したのは、0.4％アルブミン含有MEMであった。また、0.4％アルブミン含有MEMにおける細胞生存率は細胞回復の培養時間が長くなるほど低い傾向が認められ、48時間の細胞回復後では、20％以下を示した。ついで、MEM、リンゲル液、蒸留水の順に細胞生存率は上昇した。一方、4倍希釈の濾液では、0.4％アルブミン含有MEMを除くすべての濾液で対照群に近い値となった。これに反して、0.4％アルブミン含有MEMでは、細胞生存率は平均59.6％にとどまった。しかし、細胞回復の培養時間が長いほど細胞生存率の上昇が認められるようになり、48時間の細胞回復後には対照群と等しい値となった。

飼造用銀インジウム合金では2倍希釈濾液でリンゲル液を除く、すべての濾液において細胞生存率は100％前後を示し、対照群に近い値であった。一方、リンゲル液では、細胞生存率は平均60％から70％の範囲であった。一方、4倍希釈濾液ではすべての濾液で細胞生存率は100％前後を示し、対照群に近い値であった。また、細胞回復の培養時間に関しては、0.4％アルブミン含有MEMが24時間の細胞回復後に48時間の細胞回復後より低い細胞生存率をとどまった以外は、培養時間にかかわらず細胞生存率はほとんど変わらなかった。

ニッケルクロム合金の2倍希釈濾液においても細胞生存率は平均80％以上を示した。しかしこの講演に示すように、PBS（一）、MEMにおいて24時間の細胞回復後では細胞生存率の減少が認められたものの、48時間の細胞回復後では蒸留水を除いて対照群に近い値に戻った。一方、4倍希釈濾液では、すべての濾液において細胞生存率は対照群に近い値であった。

チタンではいずれの濾液においても細胞生存率は平均80％以上を示し、対照群に近い値であった。また、濾液の希釈度で細胞生存率に顕著な相違は認められなかった。

つぎに摩耗粉の細胞生存率に対する影響を動的に抽出した抽出液にFig.9～13に示した。その結果、蒸留水、リンゲル液およびPBS（一）で生じたチタンを除く金属材料、すなわちタイプIV金合金、金銀パラジウム合金、銀ズス合金、銀インジウム合金およびニッケルクロム合金の各摩耗粉は、3段階のいずれの濃度においても0％の細胞生存率であった（Fig.9～11）。これに反して、これら3種類の抽出液中で生じたチタンの摩耗粉については3段階のいずれの濃度においても細胞生存率にはほとんど影響をおよぼさず、対照群に近い細胞生存率であった（Fig.9～11）。

一方、MEMあるいは0.4％アルブミン含有MEM中で生じた摩耗粉による細胞生存率は、一部の金属材料で上記の3種類の抽出液の結果と相違が異なっていた。まず、MEMで生じたタイプIV金合金の摩耗粉による細胞生存率は0.25mg/ml濃度で平均33.8％、0.50mg/ml濃度で平均15.8％、1.00mg/ml濃度で0％であった（Fig.12）。これに反して、他の金属材料の摩耗粉による細胞生存率は上記の3種類の抽出液での結果と同じであった（Fig.12）。すなわち、3種類の飼造用銀合金、パラジウム合金、銀ズス合金、銀インジウム合金およびニッケルクロム合金の摩耗粉とともに0％の細胞生存率を示した。

一方、チタンについては3段階のいずれの濃度においても細胞生存率に影響は認められず、対照群に近い細胞生存率であった。0.4％アルブミン含有MEM中では、タイプIV金合金の摩耗粉による細胞生存率は0.25mg/ml濃度で
動的抽出下における金属材料の溶出と細胞毒性

Fig. 9 Effect of wear debris borne in distilled water on cell viability.

Fig. 10 Effect of wear debris borne in Ringer's solution on cell viability.

Fig. 11 Effect of wear debris borne in PBS(−) on cell viability.

Fig. 12 Effect of wear debris borne in MEM on cell viability.

Fig. 13 Effect of wear debris borne in MEM containing 0.4％albumin on cell viability.

平均 68.4％を示し、0.50 mg/ml 濃度で平均 22.0％、1.00 mg/ml 濃度で平均 13.2％を示した（Fig. 13）。又、ニッケルクロム合金の摩耗粉による細胞生存率はそれぞれ 0.25 mg/ml で平均 22.4％、0.5 mg/ml で平均 18.7％、1.00 mg/ml で 0％を示した（Fig. 13）。一方、3 種類の鍛造用銀合金の摩耗粉では、いずれの濃度においても細胞生存率は 0％を示した（Fig. 13）。

最後に濾液中の組成元素の溶出量をみるため、まず Figs. 14, 15 にタイプ IV金合金の結果を示した。濾液中にはパラジウム、銀、銅、亜
Fig. 14 Dissolution of gold, platinum, palladium and zinc from Type IV gold alloy. ND: Not detected

Fig. 15 Dissolution of copper from Type IV gold alloy.

鉛の溶出が認められたが、金、白金は検出されなかった。抽出液別の溶出挙動をみると、蒸留水、リンゲル液およびPBS（-）では、亜鉛の溶出が平均で最高0.725 ppmおよび銅において平均で最高0.176 ppm認めた。MEMではパラジウムで平均0.216 ppm、銅で平均10.47 ppm、亜鉛で平均0.173 ppmの溶出がそれぞれ認められた。さらに、0.4％アルブミン含有MEMでは平均0.601 ppmの銀の溶出が認められるようになるとともに、鋼、パラジウムおよび亜鉛の溶出量もそれぞれ平均15.19 ppm、0.408 ppmおよび1.284 ppmと増加した。

鉛造用金銀パラジウム合金の溶出量の結果をFigs. 16, 17に示した。鉛造用金銀パラジウム合金ではパラジウム、銀、鋼、亜鉛の溶出がみられた。蒸留水中では、平均0.142 ppmの鋼と平均0.155 ppmの亜鉛のみであった。リンゲル液では、銀、銅および亜鉛それぞれ平均0.626 ppm、0.088 ppmおよび0.026 ppmの溶出がみられた。PBS（-）では、平均0.132 ppmの銀と平均0.135 ppmの銅の溶出が認められた。MEMでは、平均0.643 ppmのパラジウムの溶出が認められるようになるとともに、平均21.69 ppmの銅の溶出がみられた。0.4％アルブミン含有MEMでは、銀、パラジウムおよび亜鉛においてそれぞれ平均で0.460 ppm、0.527 ppmおよび0.115 ppmの溶出と平均で17.59 ppmの鋼の溶出が認められた。

鉛造用銀スズ合金の溶出量の結果をFigs. 18, 19に示した。鉛造用銀スズ合金では銀はリンゲル液で平均0.155 ppm、PBS（-）で平均0.198 ppm、MEMで平均0.019 ppmおよび
Fig. 16 Dissolution of gold, silver, palladium and zinc from Ag-Pd-Cu-Au alloy.

Fig. 17 Dissolution of copper from Ag-Pd-Cu-Au alloy.

0.4％アルブミン含有 MEM で 0.419 ppm の溶出があった。また、亜鉛については蒸留水、リンゲル液および PBS（－）でそれぞれ平均 0.557 ppm, 0.209 ppm および 0.604 ppm, さらに MEM では平均 8.664 ppm, 0.4％アルブミン含有 MEM では平均 9.748 ppm の溶出がみられ、スズは検出されなかった。蒸留水中では、亜鉛のみの溶出が認められた。

鉄造用銀インジウム合金の溶出量の結果を Figs. 20, 21 に示した。鉄造用銀インジウム合金では銀がリンゲル液で平均 0.379 ppm, PBS（－）で平均 0.328 ppm, MEM で平均 0.045 ppm および 0.4％アルブミン含有 MEM で平均 0.467 ppm, また亜鉛は蒸留水で平均 0.171 ppm, リンゲル液で平均 0.868 ppm, PBS（－）で平均 0.158 ppm, MEM で平均 1.183 ppm および 0.4％アルブミン含有 MEM で平均 5.005 ppm それぞれ溶出が認められた。蒸留水中では銀は検出されなかった。なお、インジウムは検出されなかった。

ニッケルクロム合金の溶出量の結果を Figs. 22, 23 に示した。ニッケルクロム合金の場合、蒸留水、リンゲル液および PBS（－）においてニッケルの溶出が認められたが、1 ppm 以下であった。しかし、MEM あるいは 0.4％アルブミン含有 MEM 中では、それぞれ平均 44.64 ppm と平均 40.73 ppm という多量の溶出を示した。一方、クロムについては蒸留水、リンゲル液および PBS（－）中では検出されず、MEM および 0.4％アルブミン含有 MEM 中についてもそれぞれ平均 0.061 ppm および 0.079 ppm で用量の溶出がみられなかった。
Fig. 18 Dissolution of tin and silver from Ag–Sn alloy.

Fig. 19 Dissolution of zinc from Ag–Sn alloy.

Fig. 20 Dissolution of indium and silver from Ag–In alloy.

Fig. 21 Dissolution of zinc from Ag–In alloy.

ppm とわずかな溶出にとどまった。

チタンの溶出量の結果を Fig. 24 に示したが、いずれの抽出液においても今回の実験条件では検出限界以下であった。

考察

今回、咬消耗を受けるような部位で使用される歯科用金属材料の細胞毒性を in vitro で評価する目的で、動的抽出による実験をおこな

抽と抽出液の種類による影響力および生成される

Tin も溶出に対する影響をしらべ

その結果、抽出液の種類によって金属材料

からの組成元素の溶出挙動は異なり、その細胞

毒性も異なっていた。また、金属材料や抽出液

の種類によって摩耗粉の細胞毒性が異なること

も明らかとなった。

まず、金属材料ごとに抽出液の種類と細胞毒

性との関係について、溶出挙動の観点から考察
動的抽出下における金属材料の溶出と細胞毒性

を加えたい。タイプIV金合金ではいずれの抽出波あるいは希釈度においても細胞生存率は平均80%以上を示し、ほとんど細胞毒性は認められなかった。一方、同様な溶出挙動を示した鍛造用金銀パラジウム合金では0.4%アルブミン含有MEMで細胞生存率の減少が認められた。これらの細胞毒性を考える際には合金から溶出した元素や抽出期間におけるpHの変動などが細胞生存率と密接な関係にあることが考えられる。抽出期間のpHの変動は対照群と同程度であり、今回の実験ではpHの影響は無視し得ると考えられる。両合金からの溶出量で最も多かった元素は銅であり、銅、パラジウムあるいは亜鉛についてはほとんどが1ppm以下の溶出にとどまった。金属イオンの細胞毒性についても種々な金属元素の塩化物などの可溶性塩を用いた実験報告に詳しく報告されているう11。すなわち、可溶性塩からの各金属元素が50%細胞生存率を示す濃度は、銅において0.6ppm前後であり、亜鉛において1.8〜13.0ppmで、銅において25〜35ppmであったとされている。

また、Craigら12は鍛造用合金の細胞毒性の原因の1つとして、培養液中の銅の溶出をあげている。一方、今回の実験条件下では実験に用いたタイプIV金合金あるいは鍛造用金銀パラジウム合金からは銅の選択的溶出が認められた。

上記の報告でおこなわれた実験条件と今回のそれとは異なるものの、各元の細胞毒性発現濃度に対する示波を与えて考えられる。さらに本実験では2段階の希釈をおこなった点や作用時間が短かった点などにより、それぞれの溶出波では細胞毒性を発現する濃度に至らなかったものと考えられる。しかし、鍛造用金銀パラジウム合金の2倍希釈0.4%アルブミン含有MEMでは平均50.8%の低い細胞生存率を示した。その原因については本実験における結果のみでは不明であるが、溶出元種では他の抽出波と比較してよく多いわけではなかったと、溶出元素が抽出波中の成分、とくにアルブミンと反応し培養液の変性に至ったことが考えられる。また、これ以外の他の原因の可能性も排除できない。

Fig. 22 Dissolution of nickel from Ni-Cr alloy.

Fig. 23 Dissolution of chromium from Ni-Cr alloy.

Fig. 24 Dissolution of titanium.
つぎに、低融鋳造用銀合金の銀スズ合金と銀インジウム合金についてみると、鋳造用銀スズ合金では MEM および 0.4%アルブミン含有 MEM において、鋳造用インジウム合金では、リングル液においてそれぞれ 2 倍希釈で著しい細胞生存率の減少を示した。この結果を組成元素の溶出の観点からみると、両抽出液で亜鉛の溶出が顕著であったことがわかる。すなわち、亜鉛の関与が強く示唆される。吉岡13も低融銀合金を MEM 中で動的抽出した実験において、これら低融銀合金が強い細胞毒性を示したことと、その原因として亜鉛の溶出をあげている。本実験結果をみると、鋳造用銀インジウム合金ではリングル液で細胞生存率の減少がみられたが、MEM あるいは 0.4%アルブミン含有 MEM では亜鉛の溶出量が多いにもかかわらず、細胞生存率の減少は認められなかった。これらの結果の相違は MEM あるいは 0.4%アルブミン含有 MEM では溶出した金属イオンが抽出液中のアミノ酸やアルブミンと反応して、金属キレートを形成することによって細胞への影響を抑制されることによると考えられる。

すなわち、Stark ら9によれば金属イオンの細胞毒性は金属イオンの数に依存し、キレート剤を添加すると金属イオンとの結合によりイオン量が減少するために細胞毒性が減弱するというものである。リングル液では Table 2 のようにキレート効果を示すアミノ酸などを一切含んでいないため、溶出した亜鉛の細胞への影響が直接的におおよそであるよう。

一方、鋳造用銀スズ合金では MEM あるいは 0.4%アルブミン含有 MEM で細胞生存率の減少がそれぞれ認められたのは、上記のキレート形成がおこったものの亜鉛の溶出量が鋳造用銀インジウム合金に比べてそれぞれ平均 8.664 ppm と平均 9.748 ppm と多量を示し、そのために亜鉛の細胞毒性を减弱し切れなかったことによるのであろう。このことは 4 倍希釈によって細胞生存率がそれぞれ上昇を示したことかもうかがえる。さらに、鋳造用銀スズ合金における 2 倍および 4 倍希釈 MEM と 0.4%アルブミン含有 MEM での細胞生存率の相違には、鈴の溶出量の差の関係を示唆できると考えられる。すなわち、0.4%アルブミン含有 MEM では、上記の亜鉛の影響に加えて鈴の細胞毒性とが相乗的に作用したものと考えられる。

ニッケルクロム合金では MEM あるいは 0.4%アルブミン含有 MEM でそれぞれ平均 44.64 ppm と平均 40.73 ppm と溶出量が示し、いずれも 8 倍希釈の場合にねむかわらず、2 倍希釈の場合の細胞生存率は対照群に近いものであり、4 倍希釈の場合も同様であった。Wataha ら11によれば、ニッケルの 50%細胞生存率は 11.00 ppm であったと報告している。また、小杉14は様々な形状の試料を用いて動的抽出をおこない、ニッケルクロム合金からのニッケルの溶出は約 12.5 ppm で、近近から細胞生存率の減少がみられたと述べている。本実験において 2 倍希釈した場合のニッケル量はそれぞれ 22.32 ppm と 20.37 ppm となり、上記の報告からると細胞毒性を示すのに十分な濃度であったと考えられる。このような結果の相違はどのように考えればよいか、それには Riddell ら15、滝本16が指摘しているように、初期細胞数、作用時間や判定法などによる細胞生存率への影響をあげることができる。さらに、今回の実験では、作用時間が 4 時間と短かったことが細胞生存率の減少に至らなかったと考えられる。

チタンの場合はいずれの抽出液においても、細胞生存率は対照群に近い値であり、またチタンの溶出も認められなかった。今回の結果では明らかに磨耗粉の生成が認められなかったにもかかわらず、液液にはチタンの溶出は認められなかった。この結果からチタンは動的抽出によって酸化ワックスなどの磨耗粉として溶出するが、イオンとしてはほとんどの溶出せず、細胞毒性を示さないと考えられる。これは土井ら17の溶出実験あるいは Solar ら18の腐食実験の報告と一致するものである。

以上のことから、各合金の細胞毒性はその組成元素の溶出挙動と大きく関わりを有しており、ときに亜鉛の溶出は微量でも短期の細
細胞増殖度を異なる視点からの細胞毒性を把握する目的から細胞回復試験をおこなった。細胞増殖への障害因子を与えもとに正常な培養環境に戻して24時間あるいは48時間にわたり培養を続けた。教室の今井ら20-21によると、この試験法は培養細胞の細胞死に至らない細胞障害や延長型の細胞障害を評価するのに有効であるとしている。今回、蒸留水、リンゲル液やPBS（-）などの正常な培養液にとっては異なる抽出液を使用した関係もあって最終の培養には濁液を培養液に2倍あるいは4倍に希釈した、その点も考慮にかかれて、Fig.4の鋳造用金属パラジウム合金の2倍希釈0.4％アルミニウム含有MEMでの24時間あるいは48時間経過に伴う細胞生存率の上昇や、鋳造用銀スズ合金の2倍希釈MEMおよび0.4％アルミニウム含有MEMにみられた低い細胞生存率での推移あるいは低下から細胞障害因子の影響の程度を知り得たと考えている。両合金でおもに細胞生存率に関与したと考えられるのはそれぞれ銅および亜鉛である。しかし、濁液による4時間の作用後の両合金での結果は対照的であることがわかる。鋳造用金属パラジウム合金での鋼によると考えられる細胞障害は回復可能な程度といえる。一方で、鋳造用銀スズ合金での亜鉛によると考えられる細胞障害は正常な培養液に戻ったのちも、細胞生存率は減少しており、持続的であるといえよう。

以上のように細胞回復試験は従来の細胞増殖度試験では表わし難い細胞毒性を示し得ることがわかった。このことは今後、細胞回復度試験を含めたより多面的な細胞毒性を検索する必要があるといえる。

次に摩耗粉の細胞毒性について金属材料ごとに考察を加えよう。タイプⅣ金合金の場合には蒸留水、リンゲル液およびPBS（-）中では細胞生存率は0％であった。一方、MEMおよび0.4％アルミニウム含有MEMで最も低い濃度条件の0.25mg/mlでは細胞生存率がそれぞれ平均32.8％と平均68.4％を示した。金合金を用いた実験結果からPlenkら22はその摩耗粉が細胞増殖を著しく抑制したと報告し、その原因として細胞による食作用をあげている。本実験においても摩耗粉が細胞内に取り込まれたための毒性発現は十分に考えられる。一方、Evansら23はコバルトクロム合金において血漿を含む条件下で生成した摩耗粉は、表面にタンパクのコーティングを受けて、細胞に食作用されていく、そのために細胞毒性は減弱化すると述べている。本実験においても0.4％アルミニウム含有MEM中で生成した摩耗粉で細胞毒性の減弱化が認められ、摩耗粉の生成過程において摩耗粉表面へのタンパクのコーティングが考えられる。

鋳造用銀スズパラジウム合金、鋳造用銀スズ合金、鋳造用銀パラジウム合金およびニッケルクロム合金では、いずれの濃度においても細胞生存率は0％に近いものであった。すなわち、上記の4種類の合金では、摩耗粉は板状のようないく一塊ではなく、培養液と細胞数の比率の表面積が増加することによって細胞毒性を有するイオンの溶出量が増加することと、細胞による食作用で細胞内に取り込まれることの両面によって細胞毒性が生じたものであろう。Woodyら24はニッケルクロム合金の鋳造体粉末の細胞毒性をしらべ、鋳造体には細胞毒性が認められなかったが、粉末では強い細胞毒性が認められたと報告している。その原因として粉末はイオン化がおこりやすいことをあげている。

チタンの摩耗粉はいずれの抽出液においても対照群に近い値を示していた。すでにRae25,26、Plenkら22はチタン粉末を細胞に作用させた結果、ほとんど細胞毒性を示さなかったと報告しており、本結果と一致するのであった。このことはチタンが良好な生体適合性を有する材料であることを示している。
Raeは摩耗粉による細胞毒性発現の特徴として3点をあげている。すなわち、インプラント材料と体液との接触表面積の増加、摩耗粉の細胞による食作用と細胞内成分との反応、そして摂取された粒子状のインプラント材料から離れた部位への移動をあげている。本実験においても摩耗粉の生成過程での細胞毒性因子の溶出ならびに摩耗粉との接触による毒性と食作用による毒性が考えられる。このことは、摩耗粉の生成過程における抽出液の種類が最終的に摩耗粉の細胞毒性に影響をおよぼすことを示しており、生体内を考慮した抽出液の選択が重要であることを示すものである。

種々の抽出液を用いて動的抽出をおこない、そこで生成する濁液と摩耗粉との細胞毒性について溶出挙動から考察を加えてきた。今回の実験結果から、抽出液の種類は溶出挙動に大きく影響し、そのことが濁液あるいは摩耗粉の細胞毒性に影響を与えると考えられる。このこと摩耗粉を生成するこのような動的抽出をおこなう細胞毒性評価法としては抽出液を濁液と摩耗粉に分離し、それぞれについて細胞毒性を評価する必要性を示している。また、生体での使用部位に近い組成の液を抽出液として用いることが望ましいと考えられる。この結果は咬摩耗などを受ける部位で使用される歯冠修復および補綴用金属材料のin vitroにおける細胞毒性試験法の標準化を進めていく上で1つの示唆を与えるものと考える。

稿を終わるためにあたり、終始ご懇願を賜り、ご鞭撻をたまわりた大阪歯科大学歯科理工学講座主任正村正明教授に深く謝意を表し、ます。また、本研究にあたり、種々のご協力、ご助言下さった講座員各位ならびに細胞培養の段階でご援助いただいた大阪歯科大学共同利用研究施設組織培養実験施設の今井弘一施設長に厚くお礼申し上げます。

本研究の一部は、大阪歯科大学共同利用研究施設組織培養実験施設を用いたものである。


Study of Cytotoxicity and Dissolution of Metallic Biomaterials Using Dynamic Extraction (in vitro)

Yuko SANO and Shoji TAKEDA
Department of Biomaterials, Osaka Dental University, 5-31 Otemae 1-chome, Chuo-ku, Osaka 540, Japan

Abstract We studied the effects of dynamic extraction on cytotoxicity and dissolution of metallic biomaterials for dental restorations under stress by gyrating them on alumina balls for seven days in distilled water, Ringer's solution, phosphate buffered saline, Eagle's minimum essential medium (MEM), or MEM containing 0.4% albumin. Filtrate and wear debris from extracts were analyzed separately.

The filtrates of Ag-Sn alloy in MEM and MEM containing 0.4% albumin were cytotoxic, while those of the other metallic biomaterials were slightly cytotoxic. Copper was selectively dissolved from gold and Ag-Pd-Cu-Au alloys, zinc from Ag-Sn and Ag-In alloys, and nickel from Ni-Cr alloy. Titanium was not detected in the filtrate. It was found that dissolution of metallic biomaterials was increased by addition of amino acids and/or albumin. Wear debris of all the metallic biomaterials except titanium was cytotoxic, though cytotoxicity of gold alloy in MEM containing 0.4% albumin was lower. More authentic simulations of in vivo environments are essential to increase the validity of biomaterials test results. Shika Igaku (J Osaka Odontol Soc) 1992 April; 55(2): 125-140.

Key words: (Cytotoxicity); (Dissolution); Dental alloys; (Dynamic extraction)