歯列弓形態の分類
その1—相関関係分析と主成分分析—

中塚美智子隈部俊二岩井康智
金基 Pluto藤原士郎

抄録：目的歯列弓の形態分類を簡便かつ客観的に行えるようにすることを目的として、現在多く用いられているThompsonの分類基準の特徴を分析し、上頜歯列弓形態決定に影響を及ぼしている因子について検討した。

材料と方法大阪歯科大学口腔解剖学講座の歯列石膏モデル62例の上顎模型を用いた。肉眼的にThompsonの分類により、方形、円形、円形、円形V字形の4型に分類し、歯列弓を写真撮影して、等倍でプリントした。歯列上の計測点を写真上に黒点を付して表し、ノギスと分度器を用いて計測した。歯列弓上で設定した計測項目が形態上の特徴にどのような影響を及ぼしているかを主成分分析により検討した。

結果と考察歯列弓形態は犬歯の突出度を示す(4)((R＋L)／(C1
C2))、(2)180°ー(3)(C1A＝C2)°、(3)(E)ー(4)(E)C1。歯列弓の概形を示す(5)歯列弓長径と短径の比率(A-B)／(M2ーM1)，歯列の側方歯は曲线を示す(6)歯列弓な歯列弓の動径を(θ5における動径ーθ4における動径)の左右和とする各項目を統計的に分析した。歯列形態のうち約60％を占める数の多い円形はどの特徴も平均的に現れている形態であるので、他の形態ではそれぞれに特徴的な項目が認められる。形態は犬歯の突出度を、円形は前歯一臼歯歯列弓の動径を(θ5における動径ーθ4における動径)の左右和、円形V字形は前歯列の動径をそれぞれと分類する基準とすることが可能である。また主成分分析の結果、歯列弓形態は前歯列の動径、前歯列弓から臼歯列への移行部の形態、歯列弓の長さの3つの成分に集約でき、これら3成分の分類方の違いにより歯列弓形態の差が生じていることが示唆された。

結言
口腔治療において患者個々人の口腔内の状態を把握し、それに応じた治療計画を考慮していくことは大変重要である。特に歯列弓の形態を把握することは欠損部の回復や矯正治療を行う上で不可欠な要素といえる。現在、歯列弓の形態分類には方形、円形、円形V字形の4型に区分したThompsonの分類が用いられている。これはA値を引いたことに端を発するが、この分類は肉眼的観察によるもので、観察者の主体により分類が異なることが少なくないものと思われる。5また山崎によってBrocaはUpsilon、Elliptique、Paraboliqueの3種、これにHyperboliqueを加え4形態を提唱したとされているが、厳密な数学的意味を持つものではなく、これらも直感的な目測観察によるものである。

その後歯列弓の形態分類については計測点の距離などを用いた定量的表現、各種関数などを用いた数学的表現など客観的に行える方法が試みられ、数多く報告されてきた。67松本、片山、高木は上顎石膏模型を用いて歯列弓形態を計測的に決定し、松本、高木はそれぞれ5つに、片山は6つの型に分類した。6789だがこれらの方法は複雑な計測機器や計算機を用いて行われているものが多く、臨床現場で簡便かつ容易に行うのは難しいと考えられる。

そこで本研究ではThompsonの分類の客観的な基準
の設定を視野に入れ、まず上頬歯列形態決定に影響を及ぼしている因子について検討した。歯列上にいくつかの計測項目を設けて相関分析ならびに主成分分析を行い、知見を得たので報告する。

材料および方法

1. 研究材料
大阪歯科大学口腔解剖学講座所蔵の同大学の18歳から26歳までの学生の歯列を対象とした研究（男性257例、女性139例、計396例）で、咬合面に下頬の基底面から30mm、咬合状態における上下顎基底面間の距離60mmのうち次の条件を満たす男性36例、女性26例、計62例の上顎顎を対象として用いた。
1）上下顎とも健全な天然歯列を有するもの
2）歯の著しい変形、磨耗、傾転などの位置異常のないもの
3）第三大臼歯以外の欠損歯、遊歯、関節に影響を及ぼすような性質のないもの
4）切端や咬頭が明確で、咬耗や磨耗、欠失などがないもの
5）矯正歯列のないもの
6）小児歯のないもの
7）開咬、反対咬合のないもの
8）空隙のないもの

2. 方法
1）歯列の分類と計測点
肉眼的観察により上顎歯列を外形の記述によるThompsonの分類に従い、方形、円形、円弧形、円形V字形に分類した（Fig. 1）。
(1) 方形歯列：犬歯の突出状に前歯列は殆んと形態を認めず左右変相を呈し、前歯列は左右歯列にあたるもの
(2) 条件歯列：犬歯の突出形態にして前歯列は低頭を呈し、臼歯列にあたるもの

Fig. 1 Thompson's classification of dental arches.

A: The midpoint of line (IL11L)
B: The point of a vertical line from A intersected (M2r-M2r)
E: The point of a line (A-B) intersected (Cr-Cr)
O (pole): The midpoint of line (M2r-M2r)
\[\angle R: \angle (L2r-CrP1r)\]
\[\angle L: \angle (L2r-Cr-P1r)\]
\[\angle (Cr-A-Cr): \angle \text{The angle between line (A-Cr) and line (A-Cr)}\]

Fig. 2 Reference points, lines and angles.

2）歯列の突出することなきもの
(4) 帯円V字形歯列：歯列が円形であるため前歯列の形態を呈し、前歯列の突出を示すもの
歯列上の計測点は、関川の方法に準じ、両側の切歯切縁の中心、犬歯の尖頭、臼歯の側方咬頭、第三大臼歯を除く大臼歯の近心傾斜咬頭を含む14点を用い、計測の基準を参考に計測した。

まず、中切歯の計測点をそれぞれ11a、11a'（11a'11a）、11a、11b、11b'（11b'11b）の中点をA、両歯の第二大臼歯の計測点をそれぞれM2a、M2b、Aから（M2a-M2b）に下ろした垂線の足をBとした。両側の犬歯の計測点にそれぞれCa、Cb（A-B）の組を用いた。歯列の対称性を判定するために（M2a-M2b）を原点と定め、原歯列の中心を原点OとしてOと各計測点を結ぶ線分を基準 \(r \) で

NII-Electronic Library Service
Type I: Round-square arch with convex line i.

Type II: Round-square arch with concave line i.

Fig. 3 Round-square arch forms.

1, …, 7) とした。動径は歯列の基準を変換し
て解析した。計測項目を 3）に示す。（Fig. 2）

さらに、頭円類形に異型を設定したが、その基準とし
て第一小臼歯、第二小臼歯、第一大臼歯、第二大臼歯の
各種計測点を結んだ線分（P1-P2-M1-M2） (i) と第一小
臼歯と第二小臼歯の計測点を結んだ線分（P1-M2） (ii)
とを比較し、左右両側とも (i) が (ii) の外側で弧を
描いていれば帯円形-1，それ以外なら帯円形-2 と
した（Fig. 3）。（つまり (i) が (ii) の外側で弧を
描いているのが片側のみであれば、もう一方は直線的配列
なので帯円形-2 とみなした。）

2）歯列の撮影

材料の写真撮影はニコン製レンズ（AF MICRO NIK-
KOR 70-180 mm f: 4.5-5.6 D）を取り付けたニコン製
D 100 デジタルカメラ（株）ニコン、東京、日本）を
レンズ コピーステント L4（株）浅沼商会、東京、
日本）に、レンズ長軸が合の平面に垂直するよう配置し
た。実測値と写真上の計測値が等しくなるように、焦点
距離 70 mm、収縮率 1:29、合の平面とレンズの中間まで
を距離 310 mm に設定した。画像データを DELL Opti-
plex GX 200（デルコンピュータ、神奈川、日本）に取
り込み、画像処理ソフト Adobe Photoshop 5.0 LE
（Adobe Systems、カリフォルニア、アメリカ）ならび
に Adobe PageMaker 6.5 J（Adobe Systems、カリフォル
ニア、アメリカ）にて処理後、等倍の大きさで EP-
SON LP-8300 C（エプソン、長野、日本）で印刷した。

3）計測項目

上顎歯列型の形態別の特徴を検討するには以下の項目を検
討する必要があると考えられる。詳細は

① 頬レジの突起が大きいほど小さくなる。

② (A-B)/(Cn-Cg): 犬歯間距離が大きいほど小さく
なる。

③ 180°−∠(Cn-A-Cg): 前歯列の曲線の曲率が大きい
ほど歯列の基準中点と歯列の基準点間は小さくなる
ため、差は大きくなる。180°とは弧分（H1-H2）の角
度である。曲線の曲率が大きいほど周盤が大きくなるよ
うにするために 180°−∠(Cn-A-Cg) とした。

④ (A-E)/(Cw-Cg): 前歯列の曲線の曲率が大さ
ほど大きくなる。

⑤ (A-B)/(M2-C2): 前歯列示数=（歯列の幅／歯
列の長さ）×100 と類似的考え方である。長い歯
列であるほど大きくなる。

⑥ (r55−r04)+ (r55−r04): 前歯-臼歯移行部の基準
差（原点と犬歯基準中点と第一小臼歯の基準
点を結んだ線分（動径）の差）の左右和

前歯列から臼歯列の場である犬歯と第一小臼歯の 2 か
所の動径を測定し、差の左右和を比較する。帯円形の場
合動径は円の半径に近似すると考えると、この差は小さ
くなるものと考えられる。

の 6 項目、帯円形歯列型の形態を区分するため。

⑦ 頬列の形態: 片側において第一小臼歯、第二小臼
歯、第一大臼歯、第二大臼歯の各計測点を結んだ線
分（P1-P2-M1-M2）と、第一小臼歯と第二小臼歯の計測
点を結んだ線分（P1-M2）とを比較し、曲線的な配列（帯
円形-1）か直線的な配列（帯円形-2）かを判定
を追加した合計 7 項目である。

計測は写真上でミツトヨ製デジマチックキャリパノギ
ス（精度：0.01 mm，（株）ミツトヨ、東京、日本）お
よび分度器を用いて行った。
4）統計的解析

（1）母平均の推定と検定

解析各項目については以下の公式を用いて信頼度 95%での母平均の推定、ならびに有意水準 1%、5%での平均値の差の検定を行った。22-23

母平均の推定（信頼度 95%）

\[
\hat{x} = \bar{x} \pm t_{\alpha/2}(\sigma/\sqrt{n})
\]

（標本数 n, 標本平均 \(\bar{x} \), 不偏分散 \(\sigma \), 母平均 \(\mu \)）

平均値の差の検定（シュレーディングの \(t \) 検定）

検定統計量 \(t = (\bar{x} - \bar{x}') / SE \)

標準誤差 \(SE = \sqrt{\left(\frac{1}{n-1}\right)\frac{\sum(x - \bar{x})^2}{n-2} \times \frac{1}{\sqrt{n(n-1)}}} \)

（標本数 n, \(\bar{x} \), 標本平均 \(\bar{x}', \) 不偏分散 \(V, V' \)）

（2）相関係数

解析項目間で有意水準 1%において相関係分析を行った。

相関係数 \(r = \frac{\sum xy - n\bar{x}\bar{y}}{\sqrt{\sum x^2 - n\bar{x}^2}} \times \frac{1}{\sqrt{\sum y^2 - n\bar{y}^2}} \)

（独立変数 \(x \), 従属変数 \(y \), 標本数 \(n \)）

（3）主成分分析

主成分分析とは解析しようとしている多面元のデータを、そこに含まれる情報の損失を可能な限り減らして数個のデータに縮約する方法である。24-25 多数の指標を統合し総合的な指標をたてたり、観測観対をグループ分けしたりする際に用いられる分析法といえる。歯列弓上で設定した計測項目が形態上の特徴にどのように影響を及ぼしているかを統計ソフトウェア統計 2002 for Windows（株）社会情報サービス、東京、日本）を用いて主成分分析を行い、検討した。22-23 本研究では①\(\angle R+\angle L \), ②（A-B）/(C-C), ③180°-\(\angle (C-A-C) \), ④（A-E）/(C-C), ⑤（A-B）/(M2-M2), ⑥（r65-r64）n+（r65-r64）, ⑦6つの多変量データについて、寄与率の大きな順に3つの新変数に集約した。単位の相関を消去するためデータを標準化した後主成分分析を試みた。

標準化各データから平均値を減じて標準偏差で除して行った。主成分分析には分散共分散から出発するものと相関行列から出発するものがあるが、今回はデータの標準化を既に行ったため後者を採用した。

結果

1. 肉眼的観察による上顎歯列模型の分類

上顎歯列模型（男性36例、女性26例、計62例）をThompsonの分類に従って肉眼的観察により分類した結果、方形13例（うち男性8例）、帯円形36例（うち男性21例、帯円形I 1例、うち男性8例、帯円形II 25例、うち男性13例）、帯円形0例、帯円V字形10例（うち男性7例）とならなかった。

各形態の全体に占める割合は方形21.0%、帯円形58.1%（帯円形I 17.8%、帯円形II 40.3%）、帯円形4.8%、帯円V字形16.1%であった。

2. 上顎歯列模型の形態別の特徴

（1）計測項目から⑥の母平均の推定と検定及び③の型別比較

①から⑥の各項目の信頼度 95%での母平均の推定上限値、下限値、⑦の型別での例数ならびに検定結果を Table 1-3 に示す。

\(\angle R+\angle L \)

上限の最大値を示したのは帯円V、帯円V字形であった。一方下限値の、下限値と形態なる形態に有意差が認められた（t検定、p<0.01）。

<p>| Table 1 Confidence intervals for the six items evaluated (α=0.05) |
|------------------|------------------|------------------|------------------|
| Item | Square | Round-square | Round V-shaped |</p>
<table>
<thead>
<tr>
<th></th>
<th>(Cases/M/F)</th>
<th>(Cases/M/F)</th>
<th>(Cases/M/F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>① (degrees)</td>
<td>295.305</td>
<td>311.321</td>
<td>321.332</td>
</tr>
<tr>
<td>② (ratio)</td>
<td>1.03-1.08</td>
<td>1.09-1.13</td>
<td>1.02-1.08</td>
</tr>
<tr>
<td>③ (degrees)</td>
<td>40-44</td>
<td>50-53</td>
<td>42-50</td>
</tr>
<tr>
<td>④ (ratio)</td>
<td>0.18-0.20</td>
<td>0.20-0.25</td>
<td>0.20-0.23</td>
</tr>
<tr>
<td>⑤ (ratio)</td>
<td>0.61-0.68</td>
<td>0.61-0.66</td>
<td>0.59-0.62</td>
</tr>
<tr>
<td>⑥ (mm)</td>
<td>6.36-8.41</td>
<td>6.62-7.46</td>
<td>6.30-4.60</td>
</tr>
</tbody>
</table>

①Promtion of canines (\(\angle R+\angle L \))
②Curvature of anterior teeth I (A-B)/(C-C)
③Curvature of anterior teeth II \((180°-\angle (C-A-C))\)
④Curvature of anterior teeth III \((A-E)/(C-C)\)
⑤Length-to-width ratio of dental arch (A-B)/(M2-M2)
⑥Degree of roundness of the arch (r65-r64)+r65-r64)
(A-B)/(C_r-C_r)

上限値、下限値ともに帯円V字形の値が最大であった。方形、帯円形は上限値、下限値ともほぼ同じ値となった。

③ 180°－∠(C_r-A_r)

上限値、下限値ともに帯円V字形の値が最大であった。上限の最小値を示したのは方形、帯円V字形の上限値は約20°の差があった。

④ (A-E)/(C_r-C_r)

上限の最大値を示したのは帯円V字形であった。一方上限値、下限値ともに方形の値が最小であった。

② (A-B)/(C_r-C_r) の7項目について帯円形と方形および帯円形の値では有意差が認められず、方形と帯円形、帯円V字形と他の形態間で有意差が認められた（t検定、p<0.01）。

③ (A-B)/(M2r-M2r)

上限値、下限値ともに帯円V字形の値が最大であった。一方上限の最小値を示したのは帯円形であ

Table 2 Subjects with round-square arch

<table>
<thead>
<tr>
<th>Arch form</th>
<th>Cases (M/F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>11 (8/3)</td>
</tr>
<tr>
<td>Type II</td>
<td>25 (13/12)</td>
</tr>
</tbody>
</table>

Table 3 Student’s t test of differences of mean values between arch forms

<table>
<thead>
<tr>
<th>Arch form</th>
<th>Square</th>
<th>Round-square</th>
<th>Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round-square</td>
<td>47</td>
<td>-3.509**</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>-3.232**</td>
<td>1.855</td>
<td></td>
</tr>
<tr>
<td>Round V-shaped</td>
<td>21</td>
<td>-5.883**</td>
<td>1.777</td>
</tr>
<tr>
<td>t</td>
<td>-5.459**</td>
<td>-1.154</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arch form</th>
<th>Square</th>
<th>Round-square</th>
<th>Round</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round-square</td>
<td>47</td>
<td>-5.405**</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>-1.935</td>
<td>1.608</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>-3.715**</td>
<td>-2.934**</td>
<td>-3.706**</td>
</tr>
</tbody>
</table>

The difference was significant by a 2-tailed test for nonpaired samples. Blanks are overlapping data.

**p<0.01
表 4 10 項目の相関係数（上段）、（下段）

<table>
<thead>
<tr>
<th>Item</th>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>⑤</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>0.3342</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>②</td>
<td>0.5314</td>
<td>0.8242*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>③</td>
<td>0.5478</td>
<td>0.0110*</td>
<td>0.9664*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>④</td>
<td>-0.0538</td>
<td>0.6939</td>
<td>0.5108</td>
<td>0.5067</td>
<td></td>
</tr>
<tr>
<td>⑤</td>
<td>-0.4519</td>
<td>0.4531</td>
<td>0.2056</td>
<td>0.2133</td>
<td>0.6794</td>
</tr>
</tbody>
</table>

Blanks are overlapping data.
*Distinct positive relationship

Fig. 4 Eigenvectors of the principal components developed by analysis of each item.
列を示す円形-Ⅰが11例で30.6％、直線的配置を示す円形-Ⅱが25例で69.4％であった。
円形の男性21例のうち8例38.1％、女性15例のうち3例20.0％が円形-Ⅰであった。

2）相関関係分析
有意水準1％において①(A-B)/(Cn-Cc)と③180°－
∠(Cn-A-Cc)、②(A-B)/(Cn-Cc)と④(A-E)/(Cn-
Cc)、③180°－∠(Cn-A-Cc)と④(A-E)/(Cn-Cc)で
強い正の相関がみられた。また①∠R+∠Lと②180°－
∠(Cn-A-Cc)、①∠R+∠Lと③(A-E)/(Cn-Cc)、②
(A-B)/(Cn-Cc)と⑤(A-B)/(M2r-M2r)、③180°－
∠(Cn-A-Cc)と⑤(A-B)/(M2r-M2r)、④(A-E)/(Cn-
Cc)と⑤(A-B)/(M2r-M2r)と
⑥(5°-5°)+ (5°-5°)，でやや強い正の相関がみられた。
さらに①∠R+∠Lと⑥(5°-5°)+ (5°-5°)，に負の相関が認めた。
（Table 4）

3）主成分分析
各形態別の平均主成分得点レーダーチャートならびに
各主成分の固有ベクトル値を示す（Figs. 4, 5）。第1主成分は主成分負荷量から③(A-B)/(Cn-Cc)、③180°－
∠(Cn-A-Cc)、①(A-E)/(Cn-Cc)、③(A-B)/(M2r-
M2)との正の相関が強く、各歯列の第1主成分の主
成分得点が方形、帯円形全てで負の値、帯円V字形全
てで正の値を示した。第2主成分は①∠R+∠Lとの正
の相関、⑥(5°-5°)+ (5°-5°)，の負の相関が強
く、主成分得点は帯円形全てで負の値であった。第3
主成分では⑤(A-B)/(M2r-M2r)と①∠R+∠Lとの相関
係数が正、③180°－∠(Cn-A-Cc)と①(A-E)/(Cn-
Cc)の相関係数が負の値を示したが、③(A-B)/(M2r-
M2r)の固有ベクトル値（主成分の係数）が0.71と立って

Fig. 5 The character of various dental arches represented by mean values of scores of the principal components.
First principal component: Curvature of anterior teeth
Second principal component: Protrusion of canines and degree of roundness of the dental arches
Third principal component: Length/width ratio of the dental arches

考察
1）計測項目①から⑤の母平均の推定と検定及び⑥の
型別比較
結果より各計測項目は以下の形態上の特徴を有している
ものと推察される。

1）歯列の突出度：①∠R+∠L
方形の上限値は他の3形態の下限値よりも小さな値を
示した。また方形と他の形態間のみで平均値に有意差
が認められた。過去の報告でこの項目はほとんど触れ
されていないが、方形と他の分類する基準として非常に
有効な項目であると認められる。

2）前歯部の歯列度合
前歯部の歯列度合Ⅰ：②(A-B)/(Cn-Cc)
前歯部の歯列度合Ⅱ：③180°－∠(Cn-A-Cc)
前歯部の歯列度合Ⅲ：④(A-E)/(Cn-Cc)

この3項目については帯円V字形と他の形態間で
平均値に有意差が認められ、帯円V字形の分類にこれら
の項目の有効性が認められる。帯円形と方形、帯円方形
では分類の基準に用いるほどの差は認められず、特に方
形と帯円形はどの項目もほぼ同様の数値を示した。松
本は(Cn-A-Cc)を基準にして歯列をV形、VO (V-
Oval) 形、O形、OS (O-Square) 形、S形と分類して
いるが、本研究の数値と比較してみると、帯円V字形
は松本のV形と、方形は松本のS形とほぼ一致してい

NII-Electronic Library Service
3) 歯列弓の概形の判定: ①歯列弓長径と幅径の比率（A-B）/（M₂-A₂）

帯円V字形と他の形態名で平均値に有意差が認められ、帯円V字形は他の形態に比べ前後に長い歯列弓であることが示された。他の3つの形態名では平均値に有意差が認められず、歯列弓長径と幅径の比率はこれらを分類する基準として適切ではないと考えられる。

4) 歯列の帯円度の判定: ①前歯-臼歯移行部形態差（r₀₅-r₀₄）+（r₀₅-r₀₄）

帯円形と他の形態名で平均値に有意差が認められ、分類基準として考慮できることが示された。他の3つの形態名では平均値に有意差が認められず、特に方形と帯円V字形では数値幅がほど同じであった。両者とも犬歯より後方歯は直線的な配列であることが示唆される。

⑦ 歯列の形態

本研究における帯円方形-Ⅱは前歯の記述からみると該当するものが多く、かつてこの形態をどう捉えていたのかは明確である。ただ今回は前歯の形態分類から帯円方形-Ⅰと帯円方形-Ⅱを合わせて検討した。肉眼の分類で帯円方形-Ⅰの男性は38.1％、女性は20.0％、が女性の方が曲線的配列が少なかった。片山は臼歯部において隣接歯との接点を結んだ線を基に仮想臼歯線を定め、彎曲或は突出等により形態の分類を行っている。片山の報告では臼歯列が直線状に並んでいるものが約60％を占め、次いで4歯が半円形の彎曲をなしているものが約20％を見られ、性差はなかったと報告している。本研究では従来の記述にあたる曲線的配列よりも直線的配列の方が多く、片山との類似の結果を得た。

2. 相関関係分析

結果より②（A-B）/（C₃-C₄）、③180°−∠C₃-A₃-A₄、④（C₃-C₄）の3項目において前歯部歯列の彎曲の度合を表す指標としての有効性が確認された。また犬歯の突出度と前歯歯列の彎曲度合、前歯歯列の彎曲度合と歯列弓長径と幅径の比率とは相互に影響を及ぼしあいっているものと推測できる。

3. 主成分分析

関川は、主成分分析の結果、歯列弓形態の特徴について、第1主成分で歯列弓全体の幅径と長径の比率、第2主成分で方形性、第3主成分で臼歯列の開大性を表した。またShimadaは因子分析の結果、歯列弓形態の変動因として犬歯列における幅径と長径の比、臼歯列における開大性、前歯列の方形性を検討するのが妥当と報告し、Thompsonの体系は前歯列の方形性の局所的特徴に注目した分類体系だとしている。
引用文献

3. 山崎功. 頬人歯弓の形状に関する一論稿. 日本歯科学会雑誌 1934; 27 上: 74-89.
5. 宮森健雄. 人類歯列弓形態の数学的考察. 歯科医学 1957; 20: 439-443.
15. 関川三男. 九州歯科学会雑誌 1957; 34: 161-177.
Classification of maxillary dental arches by correlation and principal component analyses

Michiko Nakatsuka, Shunji Kumabe, Yasutomo Iwai, Gi-seup Kim and Shiro Fujiwara

Department of Oral Anatomy, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata-shi, Osaka 573-1121, Japan

Abstract Using 62 plaster dental models, we determined midpoints of the incisal ridge of the incisors (I1R, I1L, I2R & I2L), cusp tips of the canines (C R & C L), summits of buccal cusps of the premolars (P1R, P1L, P2R & P2L), summits of mesiobuccal cusps of the molars (M1R, M1L, M2R & M2L) and the midpoint A of line (I1R-I1L). Point B is defined as the intersection of the vertical line from point A with the line (M2R-M2L). Point E is the intersection of (A-B) with (C R-C L). We evaluated protrusion of the canines, curvature of the anterior teeth, length-to-width ratio of the dental arch, and degree of roundness of the arch. Six items were summarized into three essential principal components. We also determined the relation of the contour and position of line (P1-P2-M1-M2) to line (P1-M2). The results indicated that 60% of the maxillary dentitions had round-square arches; square arches showed a small value for protrusion of the canines; round arches were characteristic by a small degree of arch roundness; and round V-shaped arches had large values for curvature of the anterior teeth. Shika Igaku (J Osaka Odontol Soc) 2004 Dec; 67(3/4 combined) : 225-234.

Key words: Correlation analysis; Principal component analysis; Morphology; Dental arch