特許に見るソ連における顔料製造技術の進歩
(1975年9月～1976年8月)

石橋喜代司*

昨年、本誌（色材，48[1]，62～63（1976））に1975年1月～8月までの期間中に公開されたソ連特許（発明者証も含む）から、国際特許分類（IPC）のC09Cの分野に属するものの中、代表的なものを抄録し紹介したが、本稿ではその後の1年間（1975年9月～1976年8月）分の中から主なもののみ抄録した。

1. 顔料の鮮明度を高め、その色調を改善するためには、クロム鉄鉱石79～81重量部に対して、4～5重量部の酸化アルミニウムを添加することを特徴とするクロム鉄鉱石と、カルシウム含有成分から成る鉄石混合物をか焼することによる緑色無機顔料の製造法8)。

2. カーボンブラック原料として炭素を利用するために、燃焼室と反応室を上で排気口によって連結し、連結導管と反応室の間に団状粒子分離室を設けたことを特徴とするカーボンブラック製造用反応器9)。

3. SiO₂とCr₂O₃のモル比が、1～20になるような量のけい酸ナトリウムを使用し、灼熱前に沈殿生成物をpH5～9の塩基性クロム酸塩溶液で処理した後、930～1,000℃で灼熱することを特徴とするけい酸ナトリウムをクロム酸塩溶液でチオ硫酸ナトリウムによって加熱処理することによるけい酸クロム系緑色顔料の製造法9)。

4. ふっ素の発生を低減し、ふっ素含有原料の使用量を節約するために、ふっ素含有化合物としてふっ素含有亜鉛化合物を利用することを特徴とするふっ素含有化合物共存下で酸化亜鉛顔料を灼熱することによるその変性法9)。

5. カーボンブラック表面の化学活性と変性されたカーボンプラックを含有する加硫物の透明性、および物理一機械的性質を高めるために、変性剤としてカーボンプラックの重量の5～50％にあたるアルケニルフューロールを利用することを特徴とするカーボンプラック表面の変性法9)。

6. 目的物質の有機媒体中の分散性を改善するためには、粘土懸濁物をアルケニルフューロールとホルムアルデヒド、および芳香族族である脂肪族族アミンの1：1～2：1～4：1～2のモル比での酸合生成物を用いて処理することを特徴とする粘土ベースをベースとし颜料の製造法9)。

7. 褐色顔料を得るために、原料化合物としてクロム酸水素アンモニウムと塩基性炭酸ミッケルを用い、混合水が共存するもので行ない、得られた混合物を150～350℃でか焼することを特徴とするクロム・ニッケル顔料の製造法9)。

8. 造粒品質を高めるために、液体の使用量を造粒されたカーボンプラックの量に応じて変化させることを特徴とするカーボンプラックの造粒過程を自動的に制御する方法9)。

9. 製品の顔料性を改善するとともに製造コストを低下させるために、水酸化クロムの熱・水力学的処理を酸化クロムに対する全アルカリのモルをNaOH1モル：Cr₂O₃10モル以上に保ち、元素状イオンの溶液中に5％クロムの還元反応生成物を共存させてながら行なうことを特徴とする酸化剤共存下で温度280～300℃、圧力63～85気圧において水酸化クロムを熱・水力学的処理することによるエメラルド色クロム顔料の製造法9)。

10. 得られる顔料の色相性と塗装性を改善するためには、水酸化クロムの熱・水力学的処理をクロムの50～150重量％にあたるクロム酸ナトリウムを共存下で行なうことを特徴とする酸化剤共存下で温度280～300℃、圧力63～85気圧において水酸化クロムを熱・水力学的処理することによるエメラルド色クロム顔料の製造法18)。

11. 色相の顔料を製造するとともにその吸収性を低下させるために、原料鉄石混合物中に酸化スズを25～28％添加し、1,280～1,320℃でか焼することを特徴とする

昭和51.7.19受理
Progress of Manufacture Techniques for Pigment in USSR Patents
Kiyoshi ISHIBASHI

*技術情報コンサルタント
大阪市平野区加美東4丁目20-19
新刊紹介

表面分析——IMA, オージュ電子・光電子分光の応用——

染野 樹・安藤宏昭
21.5×15.0cm, 338頁
1976年3月10日第1版
第1刷発行
3,800 円（株）講談社

固体表面の研究対象には、表面の幾何学的構造（表面原子配列、表面微細構造・欠陥）と表面原子の状態（原子組成、不純物の検出、原子上位状態、原子間の構造）などに加えられるが、これらの研究に活用される観測装置には主に次のものがある。

X線光電子分光、真空紫外光電子分光、オージュ電子分光、インマイクロアナリシス、X線マイクロアナリシス、電子スピン共鳴、高速電子回折、低速電子回折、電場放射顕微鏡、電場オージュ顕微鏡、電場イオン顕微鏡、光電子顕微鏡

本書では、インマイクロアナリシス、オージュ電子分光、X線光電子分光および真空紫外光電子分光を取上げて、実際にこれらの手段を利用して研究者である。どのようにしたら最も必要な表面の情報を得られるかに重点をおいて述べている。

内容は7章にわかれており、表面分析概説、イオンマイクロアナリシスの基礎、イオンマイクロアナリシスの応用、オージュ電子分光の基礎、オージュ電子分光の応用、光電子分光の基礎、光電子分光の応用に関して、装置・原理・測定技術・解析技術について説明されている。

応用については、イオンマイクロアナリシスでは、金属性への応用（合金等の微量分析、酸化被膜、腐食面、結晶粒界的分析、水分の分析）、半導体材料への応用、表面および薄膜への応用、セラミックス、触媒、表面反応、電気化学への応用など、オージュ電子分光では、汚染分析、表面検査などへの応用、金属・半導体への応用、薄膜・厚膜・多層膜への応用、結晶構造への応用、化学反応への応用が解説されている。また、光電子分光の応用は、有機化合物（炭素、酸素、窒素、硫黄）、無機化合物（簡単な無機化合物、遷移金属化合物、酸化物、亜化物）、金属・合金などの光電子分光スペクトルおよび吸着への応用、触媒表面への応用に関して説明している。

表面分析法に関心を持つ者ならに関係なく、本書のような教科書の読者は個人として活用するに最適といえよう。基礎知識の習得には大いに役立つであろう。

（小石）