Adjuvant Chemotherapy with Gemcitabine for Resected Biliary Tract Cancer: A Single-Arm Phase 2 Study

Noriyuki Kitagawa1†, Hiroaki Motoyama1†, Akira Kobayashi1*, Takahide Yokoyama1
Akira Shimizu1, Tsuyoshi Notake1, Kentaro Fukushima1, Hitoshi Masuo1
Takahiro Yoshizawa1, Teruomi Tsukahara2 and Shin-ichi Miyagawa1
1) First Department of Surgery, Shinshu University School of Medicine
2) Department of Preventive Medicine and Public Health, Shinshu University School of Medicine

Objective: This phase 2, single-arm trial aimed to evaluate the efficacy and safety of gemcitabine in the adjuvant setting for patients with biliary tract carcinoma (BTC).

Method: Patients undergoing surgery subsequently received 6 cycles of adjuvant gemcitabine (1000 mg/m²) intravenously over 30 minutes on days 1, 8, and 15 every 4 weeks. The primary end point was a two-year disease-free survival (DFS) rate and secondary end points were a two-year overall survival (OS) rate, tolerability, and the frequency of grade 3 or 4 toxicity.

Results: A total of 55 patients were enrolled. Primary tumor sites were intrahepatic bile duct in 14, extrahepatic bile duct in 34, gallbladder in 3, and ampulla of Vater in 4. During median follow-up of 40 months, 34 patients developed disease recurrence. Two-year DFS and OS rates were 47.7 % and 78.2 %, and median DFS and OS were 23 months and 46 months, respectively. The long-term outcomes in patients with extrahepatic bile duct carcinoma were similar compared with a historical cohort who underwent surgery alone. The completion rate and total dose intensity were 61.8 % and 70.3 %, respectively. Twenty-six patients (47.3 %) had grade 3 or 4 toxicity, none of which culminated in a fatal event.

Conclusion: The present study failed to show significant benefits of gemcitabine in the adjuvant setting for patients with resected BTC, although the regimen was well tolerated. Shinshu Med J 65:99-111, 2017

(Received for publication September 8, 2016; accepted in revised form December 20, 2016)

Key words: biliary tract cancer, adjuvant chemotherapy, gemcitabine
significantly prolonged the 5-year survival rate in patients with stage II or greater gallbladder cancer, whereas no significant difference was observed between patients with and without the adjuvant therapy in pancreatic cancer, bile duct cancer, and CAV.

Gemcitabine is a key drug of chemotherapy for pancreatic carcinoma. Previous study showed that administration of gemcitabine in an adjuvant setting significantly delayed the development of recurrent disease compared with surgery alone\(^{22}\). However, there have been few published prospective studies of adjuvant gemcitabine chemotherapy for resected BTC. We therefore conducted a phase 2, single-arm trial aimed at evaluating the efficacy and safety of gemcitabine in the adjuvant setting for patients with BTC.

Method

A Patient selection

Patients with histologically verified BTC were eligible if they had undergone macroscopically curative resection and no prior chemotherapy and/or radiotherapy. Additional eligibility requirements included: 20 years ≤ age < 80 years; Eastern Cooperative Oncology Group performance status of 0-2; adequate bone marrow function (leucocyte count ≥ 4,000/mm\(^3\), neutrophil count ≥ 2,000/mm\(^3\), hemoglobin ≥ 10 g/dl, and platelet count ≥ 100,000/mm\(^3\)), adequate liver function (serum albumin ≥ 3.0 g/dl, total bilirubin ≤ 2 times the upper limit of normal (ULN) and aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ≤ 3 times ULN); adequate renal function (creatinine ≤ 1.0 mg/dL); and life expectancy ≥ 3 months. All patients provided written informed consent. Exclusion criteria included contracting active infection, synchronous cancer, pregnancy or lactation, a history of severe drug allergy and other severe comorbid diseases. The protocol was approved by the institutional review board at Shinshu University. All procedures were performed in accordance with the 1964 Declaration of Helsinki. Clinical trials identification number was UMIN000014018.

B Adjuvant chemotherapy with gemcitabine

Patients received adjuvant chemotherapy with 6 cycles of gemcitabine every 4 weeks, primarily within 8 weeks following surgery. Each chemotherapy cycle consisted of 3 weekly infusions of gemcitabine 1,000 mg/m\(^2\) given by intravenous infusion during a 30-minute period, followed by a 1-week rest. No premedication was administered in each gemcitabine treatment. The treatment regimen was terminated in the case of disease progression, intolerable adverse events or patient refusal.

C Toxicity and dose modification

The toxicities were graded according to the Common Terminology Criteria for Adverse Events version 3.0\(^{23}\). Gemcitabine doses should be interrupted in cases of grade 2 or higher events and treatment should be delayed until complete recovery or until the adverse event improves to grade 0 or 1. Gemcitabine was decreased by 20 % in subsequent cycles at the first occurrence of a grade 4 toxicity, and it was reduced by 40 % at the second occurrence of a given grade 4 toxicity. Treatment with gemcitabine was permanently stopped if, despite dose reduction, a grade 4 toxicity occurred for the third time.

D Study end points

The primary end point was a two-year disease-free survival (DFS) rate and secondary end points were a two-year overall survival (OS) rate, tolerability, and the frequency of grade 3 or 4 toxicity. Tolerability was further analyzed after the stratification of the patients according to whether they had undergone a major hepatectomy, defined as the resection of three or more Couinaud’s segments\(^{24}\).

E Statistical analyses

The trial was designed to have 80 % power to detect an increase in two-year DFS rate from 40 % in the historical cohort with surgery alone at our institution to 60 % in patients receiving adjuvant gemcitabine chemotherapy. A total of 48 patients would be required with a two-sided significance level of 5 %. To allow for dropouts and to ensure that we had sufficient evidence to meet the trial objectives, we aimed to recruit 55 patients. All analyses were performed on an intention-to-treat basis. Data were expressed as medians with range. The significance of differences between the groups was assessed by the
chi-square test, Fischer’s exact test, unpaired Student’s t-test, Welch’s t-test, Mann–Whitney U test, log–rank test and Cox’s proportional hazard model as appropriate. A p value less than .05 was used to indicate a significant difference. All statistical analyses were made using the JMP software version 10.0 (SAS Institute, Cary, North Carolina, USA).

Results

A Patient characteristics

Between April 2006 and February 2010, a total of 55 patients were enrolled in the present study with the diagnosis of intrahepatic cholangiocarcinoma (ICC) in 14, extrahepatic bile duct carcinoma (EBC) in 34, gallbladder carcinoma (GBC) in 3, and carcinoma of the ampulla of Vater (CAV) in 4. The background characteristics are summarized in Table 1. The median age was 67 (34–78) years. A median preoperative CEA and CA19–9 values were 2.4 ng/mL and 44.3 U/ml, respectively. The most frequently performed surgical procedure was hepatectomy with bile duct resection (26 patients; 47.3 %), followed by pancreaticoduodenectomy (15 patients; 27.2 %). In pathologic staging based on 7th edition American Joint Committee on Cancer (AJCC) classification, almost three fourths were categorized as having T2 (n = 21, 38.2 %) or T3 (n = 17, 30.9 %) primary tumors. Lymph node involvement was observed in 24 patients (43.6 %). An R0 resection was achieved in 41 patients (74.5 %).

B Treatment administration

Thirty-four patients (61.8 %) received the full 6 cycles of adjuvant chemotherapy. The reasons for withdrawal from treatment included tumor recurrence (8 patients; 38.1 %), adverse events (8 patients; 38.1 %), and patient preference (5 patients; 23.8 %). The median relative dose intensity (RDI) was 70.3 % (range, 9.9–100 %). The completion rate and the RDI tended to be lower among patients who had undergone a major hepatectomy, compared with those who had not (p = 0.199 and 0.103, respectively) (Table 2).

C Adverse events

The incidence of adverse events is shown in Table 3. The grade 3 or 4 toxicities included leukopenia (23.6 %), neutropenia (45.5 %), thrombocytopenia (1.8 %), and fatigue (1.8 %). There were no treatment-related deaths.

D Long-term outcomes

During a median follow-up period of 40 months, a total of 34 patients (61.8 %) developed tumor recurrence with median time to recurrence of 11.5 months (range, 1.8–55.8 months). Liver was the most common recurrence site (47.0 %) (Table 1). The 2–year DFS rate and OS rate was 47.7 % and 78.2 % (Fig. 1A, B), and median DFS and OS were 23 months and 46 months, respectively.

We analyzed the effectiveness of adjuvant chemotherapy for patients with EBC in comparison with the historical cohort of surgery alone (n = 187), because of the relatively smaller number of patients with ICC, GBC and CAV. No significant difference was observed in clinicopathological data between patients with and without adjuvant chemotherapy except for preoperative carcinoembryonic antigen (CEA) (Table 4). There was no statistically significant difference in DFS (two-year DFS rate of 42.5 % vs. 49.8 %, p = 0.495) and OS (two-year OS rate of 76.5 % vs. 64.4 %, p = 0.568) between patients with and without adjuvant chemotherapy (Fig. 2A, B). No significant survival advantage was observed in EBC patients receiving adjuvant chemotherapy when the patients were stratified according to the presence or absence of lymph node involvement or curability (Fig. 3A–D).

IV Discussion

This study tested the null hypothesis that adjuvant gemcitabine chemotherapy increases two-year DFS rate from 40 % to 60 %. However, we failed to show a significant survival benefit of adjuvant chemotherapy. In a subgroup analysis, no significant difference was observed in DFS and OS between EBC patients with and without adjuvant chemotherapy. Although a recent meta-analysis showed a survival benefit of adjuvant therapy for patients with lymph node involvement or those undergoing R1 resection, adjuvant chemotherapy did not prolong the survival of such high-risk patients in the present
Table 1 Background characteristics and perioperative data of the patients who received adjuvant chemotherapy (n = 55)\(^a\)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)(^b)</td>
<td>67 (34-78)</td>
</tr>
<tr>
<td>Gender</td>
<td>Male 36 (65.5) Female 19 (34.5)</td>
</tr>
<tr>
<td>Tumor location</td>
<td>Intrahepatic cholangiocarcinoma 14 (25.4) Extrahepatic bile duct carcinoma 34 (61.8) Gallbladder carcinoma 3 (5.5) Carcinoma of the ampulla of Vater 4 (7.3)</td>
</tr>
<tr>
<td>CEA (ng/mL)(^b)</td>
<td>2.4 (0.9-16.8)</td>
</tr>
<tr>
<td>CA19–9 (U/mL)(^b)</td>
<td>44.3 (0.6-14155.0)</td>
</tr>
<tr>
<td>Operative procedure</td>
<td>Hepatectomy with bile duct resection 26 (47.3) Hepatectomy with PD 3 (5.5) Hepatectomy 8 (14.5) PD 15 (27.2) Bile duct resection 3 (5.5)</td>
</tr>
<tr>
<td>AJCC grading</td>
<td>T1 8 (14.5) T2 21 (38.2) T3 17 (30.9) T4 9 (16.4) N N0 31 (56.4) N1 24 (43.6) Stage Stage I 12 (21.8) Stage II 23 (41.8) Stage III 11 (20.0) Stage IV 9 (16.4) G G1 35 (63.6) G2 8 (14.6) G3 11 (20.0) G4 1 (1.8) R R0 41 (74.5) R1 14 (25.5) Postoperative course</td>
</tr>
</tbody>
</table>

\(^a\)Values in parentheses are percentages unless indicated otherwise.

\(^b\)Values in parentheses are ranges.

CEA, carcinoembryonic antigen ; CA19–9, carbohydrate antigen 19–9 ; PD, pancreatoduodenectomy ; AJCC, American Joint Committee on Cancer.
Adjuvant chemotherapy with gemcitabine for BTC

Table 2 Tolerability of adjuvant chemotherapy stratified according to whether a major hepatectomy had been performeda

<table>
<thead>
<tr>
<th></th>
<th>Major hepatectomyb (n = 28)</th>
<th>Other operative procedures (n = 27)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completion rate (%)</td>
<td>57.1</td>
<td>77.8</td>
<td>0.103</td>
</tr>
<tr>
<td>Relative dose intensity (%)</td>
<td>65.2 (9.9–100.0)</td>
<td>92.1 (10.7–100.0)</td>
<td>0.054</td>
</tr>
</tbody>
</table>

Values in parentheses are ranges.

Major hepatectomy was defined as removal of three or more Couinaud segments24.

Table 3 Adverse events as evaluated according to the Common Terminology Criteria for Adverse Events (version 3.0)

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Any grade (%)</th>
<th>Grade 3 or 4 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucopenia</td>
<td>43 (78.2)</td>
<td>13 (23.6)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>42 (76.4)</td>
<td>25 (45.5)</td>
</tr>
<tr>
<td>Anemia</td>
<td>24 (43.6)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>25 (45.5)</td>
<td>1 (1.8)</td>
</tr>
<tr>
<td>Non-hematological</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver dysfunction</td>
<td>6 (10.9)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>5 (9.1)</td>
<td>1 (1.8)</td>
</tr>
<tr>
<td>Anorexia</td>
<td>13 (23.6)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Nausea</td>
<td>7 (12.7)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Rash</td>
<td>6 (10.9)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

study. Previous studies on postoperative adjuvant treatment of BTC are summarized in Table 515(16) 18–20,26–36. Although some studies have suggested hopeful effects of adjuvant treatment, others could not reveal that adjuvant treatments contribute to delaying the development of recurrence and prolonged survival. In particular, 2 RCTs failed to demonstrate significant benefit for adjuvant chemotherapy in patients with curatively resected BTC15,36. Thus, at present, the evidences seems to be insufficient support this treatment strategy, in spite of its worldwide adoption in many major institutions37.

Previous study demonstrated that the incidence of serious adverse events was significantly lower in patients treated with adjuvant gemcitabine alone than that in patients treated with fluorouracil plus leucovorin (30 % vs. 49 %, p < 0.01) for resected periampullary carcinoma36. In the present study, adjuvant gemcitabine could be safely administered to patients with resected BTC. Although 47.3 % of patients experienced grade 3 or 4 neutropenia during the treatment, most of these toxicities were transient, and no fatal event occurred. Furthermore, the occurrence rate was comparable to that of the previously reported phase 3 trial of adjuvant gemcitabine for resected pancreatic carcinoma in Japan, JSAP-02 (70.0 %)38.

Considering that gemcitabine is rapidly deaminated to its inactive metabolite, 2, 2-difluorodeoxuryridine, by cytidine deaminase, which abounds in the liver39,40, the removal of a large amount of liver parenchyma might enhance the toxicity of gemcitabine, making the continuation of chemotherapy difficult. Indeed, two recent phase I studies examining adjuvant gemcitabine monotherapy in patients with BTC undergoing a major hepatectomy revealed that the recommended dose of gemcitabine was much lower than the regular dose for unresectable and recurrent BTC21,41. In line with these findings, the present study showed that the completion rate and the RDI tended to be lower among patients who had undergone a major hepatectomy, compared with those who had not.
An analysis of initial recurrence site in the present study showed that distant metastasis occurred more frequently than local recurrence, and the most prevalent site of distant metastasis was the liver. Our results are in line with the previous studies of hilar cholangiocarcinoma42, distal cholangiocarcinoma32,43, and carcinoma of the ampulla of Vater14,44,45.

Considering these results, although it remains con-
Adjuvant chemotherapy with gemcitabine for BTC

Fig. 2 Comparison of DFS and OS between extrahepatic bile duct carcinoma patients with and without adjuvant chemotherapy. There was no statistically significant difference in 2-year DFS and OS rates between two groups (42.5 % vs. 49.8 %, \(p = 0.495 \), and 76.5 % vs. 64.4 %, \(p = 0.568 \), respectively).

![Graphs showing DFS and OS with adjuvant chemotherapy vs. surgery alone.](image)

Adjuvant chemotherapy is suitable for adjuvant treatment for resected BTC, systemic therapy could play a role as an adjuvant treatment modality. Indeed, a meta-analysis demonstrated that patients receiving chemotherapy or chemoradiotherapy showed better long-term outcomes than those undergoing radiotherapy alone\(^{25}\).

Although gemcitabine monotherapy was used for advanced BTC as the community standard in the 2000s\(^{46-48}\), the first-line chemotherapeutic regimen for advanced BTC is, at present, considered to be gemcitabine-based combined therapy\(^{49,50}\) because of its superior anti-tumor effect\(^{31}\). In the adjuvant setting, there was no previous study in the English literature except for a report from Murakami et al. They retrospectively studied the effect of gemcitabine plus S-1 chemotherapy for resected BTC, and showed that the combined regimen contributed to improved long-term outcomes in patients with International Union Against Cancer stage II BTC\(^{58}\). Further studies are needed to develop the effective regimen of adjuvant chemotherapy for resected BTC.
Fig. 3 Effects of adjuvant chemotherapy in patients with extrahepatic bile duct carcinoma stratified according to their N or R categories. No significant prolongation of the DFS was observed among patients receiving adjuvant chemotherapy in all the subgroups. A) N0 (n = 126); B) N1 (n = 95); C) R0 (n = 187); D) R1 (n = 34).
There were several limitations in this study. The study design was single-arm. The most important limitation of the present study was the heterogeneity of the study population, consisting of all types of BTC including ICC, EBC, GBC, and CAV. Some researchers have reported that the biological behavior might be different among the tumor types based on the results of sensitivity to non-surgical treatments or survival profile after surgery. Therefore, a stratified analysis according to tumor type may reveal the true impact of adjuvant treatment in each tumor type of BTC. Despite these limitations, however, we believe that our results are of interest, because there have been so few reports in the English literature of a phase 2 trial of adjuvant gemcitabine monotherapy for resected BTC.

In conclusion, the present study failed to show significant benefits of gemcitabine in the adjuvant setting for patients with resected BTC, although the regimen was well tolerated. Further investigation of adjuvant treatments might be needed to improve long-term outcomes in BTC patients.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Tumor location</th>
<th>No. of patients</th>
<th>Adjuvant therapy</th>
<th>5-year DFS rate (%)</th>
<th>5-year OS rate (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todoroki</td>
<td>2000</td>
<td>EBC</td>
<td>28</td>
<td>GEM</td>
<td>34</td>
<td>13</td>
<td>0.014</td>
</tr>
<tr>
<td>Kreaf</td>
<td>2002</td>
<td>GBC</td>
<td>21</td>
<td>GEM</td>
<td>33</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Kim</td>
<td>2002</td>
<td>EBC</td>
<td>84</td>
<td>GEM</td>
<td>31</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Nakeeb</td>
<td>2002</td>
<td>ICC, EBC, GBC</td>
<td>42</td>
<td>GEM</td>
<td>13</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Takada</td>
<td>2002</td>
<td>EBC</td>
<td>58</td>
<td>GEM</td>
<td>27</td>
<td>24</td>
<td>NS</td>
</tr>
<tr>
<td>Gerhards</td>
<td>2003</td>
<td>EBC</td>
<td>71</td>
<td>GEM</td>
<td>28</td>
<td>38</td>
<td>0.330</td>
</tr>
<tr>
<td>Sikora</td>
<td>2005</td>
<td>CAV</td>
<td>49</td>
<td>GEM</td>
<td>27</td>
<td>34</td>
<td>NS</td>
</tr>
<tr>
<td>Czito</td>
<td>2005</td>
<td>GBC</td>
<td>22</td>
<td>GEM</td>
<td>37</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Sagawa</td>
<td>2005</td>
<td>CAV</td>
<td>39</td>
<td>GEM</td>
<td>24</td>
<td>36</td>
<td>0.052</td>
</tr>
<tr>
<td>Hughes</td>
<td>2007</td>
<td>EBC</td>
<td>34</td>
<td>GEM</td>
<td>35</td>
<td>27</td>
<td>< 0.040</td>
</tr>
<tr>
<td>Krishnan</td>
<td>2007</td>
<td>CAV</td>
<td>55</td>
<td>GEM</td>
<td>60</td>
<td>69</td>
<td>0.300</td>
</tr>
<tr>
<td>Borghero</td>
<td>2008</td>
<td>EBC</td>
<td>42</td>
<td>GEM</td>
<td>36</td>
<td>42</td>
<td>0.590</td>
</tr>
<tr>
<td>Nelson</td>
<td>2009</td>
<td>EBC</td>
<td>45</td>
<td>GEM</td>
<td>33</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Gold</td>
<td>2009</td>
<td>GBC</td>
<td>25</td>
<td>GEM</td>
<td>37</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Murakami</td>
<td>2009</td>
<td>EBC, GBC, CAV</td>
<td>50</td>
<td>GEM</td>
<td>57</td>
<td>24</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Neoptolemos</td>
<td>2012</td>
<td>EBC, CAV</td>
<td>141</td>
<td>GEM</td>
<td>143</td>
<td>144</td>
<td>0.230</td>
</tr>
<tr>
<td>Present Study</td>
<td>2015</td>
<td>ICC, EBC, GBC, CAV</td>
<td>55</td>
<td>GEM</td>
<td>37</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

A retrospective study
B A prospective randomized controlled trial
C A prospective study compared to historical control
DFS, disease–free survival; OS, overall survival; CT, chemotherapy; RT, radiation therapy; EBC, extrahepatic bile duct carcinoma; NA, not applicable; ERBT, external–beam radiation therapy; NR, details not reported; GBC, gallbladder carcinoma; ICC, intrahepatic cholangiocarcinoma; 5FU, 5-fluorouracil; GEM, gemcitabine; MMC, mitomicin C; NS, not significant; CAV, carcinoma of the ampulla of Vater; ILRT, intraluminal radiation therapy; Cap, capecitabine; AJCC, American Joint Committee on Cancer; UICC, International Union Against Cancer; FA, folinic acid.
References

45) de Castro SM, Kuhlmann KF, van Heek NT, Busch OR, Offerhaus GJ, van Gulik TM, Obertop H, Gouma DJ: Recurrent disease after microscopically radical (R0) resection of periampullary adenocarcinoma in patients without adjuvant therapy. J Gastrointest Surg 8: 775–784: discussion 784, 2004
50) Cho JY, Paik YH, Chang YS, Lee SJ, Lee DK, Song SY, Chung JB, Park MS, Yu JS, Yoon DS: Capecitabine com-
Adjuvant chemotherapy with gemcitabine for BTC

combined with gemcitabine (CapGem) as first-line treatment in patients with advanced/metastatic biliary tract carcinoma. Cancer 104: 2753-2758, 2005

