分析の対象としたS. aureus 感染症は、全症例の約70%を占めていた。S. aureus 感染症の陽性率は、検体数が少ないため正確な値は不明であるが、全体的に高い傾向が見られた。

Key words: S. aureus 感染症, 致死性の原因, 感染症の予防, 医療機関における対策

分析の結果、S. aureus 感染症の陽性率は、検体数が少ないため正確な値は不明であるが、全体的に高い傾向が見られた。

Key words: S. aureus 感染症, 致死性の原因, 感染症の予防, 医療機関における対策

参考文献

分析の対象としたS. aureus 感染症は、全症例の約70%を占めていた。S. aureus 感染症の陽性率は、検体数が少ないため正確な値は不明であるが、全体的に高い傾向が見られた。

Key words: S. aureus 感染症, 致死性の原因, 感染症の予防, 医療機関における対策

参考文献

分析の対象としたS. aureus 感染症は、全症例の約70%を占めていた。S. aureus 感染症の陽性率は、検体数が少ないため正確な値は不明であるが、全体的に高い傾向が見られた。

Key words: S. aureus 感染症, 致死性の原因, 感染症の予防, 医療機関における対策

参考文献
ルギー性鼻炎、アレルギー性喘息など）があることが明らかとなり、その結果についても既に報告した。
一方、アトピー性皮膚炎患者の前庭、手指、病変局所からは多数の黄色ブ菌が分離され、これが病態場面因子であるかは病態増悪因子として働く可能性が指摘されている。更に、アトピー性皮膚炎患者の血清中には、患常者では認められないStaphylococcal enterotoxin A（SEA）、Staphylococcal enterotoxin B（SEB）特異的IgE抗体が検出され、その抗体値はアトピー性皮膚炎の重症度や活動性に合わせて変動するとの報告がなされている。
そこで、1998年6月より2000年1月までの約2年間に、栄養専門学校学生312名を対象にして、アンケート調査と鼻腔拭き取り検査を実施し、血液像検査、総IgE抗体の検定。SEA、SEBに対する特異的IgE抗体の測定及びSEBに対する特異的IgG抗体の測定を行った。
得られた結果から、黄色ブ菌陽性者のアレルギー性疾患既往の有無を検討すると、陽性者の血液像パター、総IgE抗体、特異的IgE抗体及び特異的IgG抗体の動態を各測定値で解析し、更に陽性者と陰性者の各測定値の平均値を用いて、両者間における測定値の比較検討を試みた。また陽性者と陰性者における各測定値が、アレルギー性疾患既往の有無でどのような変動を示すかなどについても統計解析を試みた。

材料及び方法
1. 調査対象及び調査方法

調査対象は、東京都内の栄養専門学校学生312名（男性40名、女性272名、平均20歳）で、調査期間は1998年6月から2000年1月までの1年7か月間であった。1998年8月から1999年1月までは187名の学生を対象にして、学生自身による鼻腔拭き取り検査を8月を除き各月1回、計7回実施した。次いで、別途125名の学生を対象にして、1999年9月から2000年1月までに計5回の検査を実施した。黄色ブ菌陽性者の判定基準は、前報18に準じた。検査総数は1,934例であった。

血液検査の調査対象は、1998年6月から1999年1月まで及び1999年9月から2000年1月までの調査対象から各1クラスを無作為に選択した。採血は、本調査への協力承諾を学生から得た後、本校近隣の医院で実施した。採血者数はクラス全員の98名であった。

2. 黄色ブドウ球菌の分離及びコアグラーザの試験方法

黄色ブドウ球菌の分離及びコアグラーザの試験は、前報18と同様に行った。

3. 血液像検査

採血後、直ちに脱脂したスライドガラスに血液の少量を塗沫し、乾燥後、アルコール固定をした。次いでPappenheimの二重染色法による染色を行い、検査に供した。なお、血清は検査に供するまで－80℃に保存した。

4. 総IgE抗体の測定

血清中に関連する総IgE抗体の測定は、enzyme-linked immunosorbent assay（ELISA）法で実施した。

5. SEA、SEBに対する特異的IgE抗体の測定

サンドイッチ法に基づく蛍光素酶免疫測定法（fluoroenzyme immunoassay, FEIA）によるユニキャップ（UNICAP）特異的IgE抗体測定用キット（PHARMACIA Diagnostics, AB, Uppsala, Sweden）を用いてマニュアルに従い測定した。

6. SEBに対する特異的IgG抗体の測定

SEBに対する特異的IgG抗体の測定は、TMB Microwell Peroxidase Substrate System（KPL, Kirkegard & Perry Laboratories Inc., Gaithersburg, MD USA）を用いてQuantitative ELISA（Sandwich）Immunoassay法でマニュアルに従い、測定波長450 nmにおける吸光度をマイクロタイタープレート型自動濃度測定器（Model MPR-A 411, Tosoh Co., Tokyo）を用いて測定した。なお、SEBに対する特異的IgG抗体値は、測定波長吸光度で示し、使用SEBはデンタ生研（株）から供与された精製SEBを用いた。

7. アンケート方法

アンケート調査は、本調査の全員（312名）を対象に前報18と同一方法、同一内容で実施した。

統計解析

前報と同様に、黄色ブ菌保有の有無とアレルギー性疾患既往の有無及びその症状との関連はYates補正のχ²検定を行い、黄色ブ菌検出度の関連ではオッズ比による検定を行った。更に調査期間の陽性率については傾向の検定を行い、黄色ブ菌保有者と非保有者の血清を用いた血液像パター、総IgE抗体値、SEA、SEBに対する特異的IgE抗体値及びSEBに対する特異的IgG抗体値については、平均値の差の検定、相関分析を行った。

結果及び考察

1. 対象学生の陽性率

黄色ブ菌陽性者は、対象者312名のうち男性20名、女性106名計126名であった。調査対象中にこれら陽性者から分離した黄色ブ菌株数は373株（1名1株ずつ）で、373株（1名1株ずつ）であり、陽性者数は373名である。陽性者は186名であった。

黄色ブ菌陽性者は、男性23.1%（56/242）、女性18.7%（317/1,692）、平均19.3%（373/1,934）であった。1996年度（1回/年）及び1997年度（2回/年）の検査の区間で黄色ブ菌の陽性率は、それぞれ男性14.3%、6.9%、女性12.4%、12.1%，平均値12.6%，11.6%を示したこと
から。今回の調査での黄色ブドウ球菌陽性率は全般的に高い傾向にあった。健康人の鼻腔における陽性率は、一般に10～20％7)8)と報告されていることから、男性の陽性率は特に高率であった。

一方、陽性者126名の黄色ブドウ球菌検出度0.1～0.6（陽性回数/検査回数）を示した者は92名（男性16名、女性76名）で陽性者全体の73.0％（92/126）を占め、その中でも検出度0.7以上を示したものの、すなわち高頻度に黄色
ブドウ球菌が検出されたのは34名（男性4名、女性30名）で
陽性者全体の27.0％（34/126）であった。前回（1997年度）の調査結果9)では、黄色ブドウ球菌検出度0.1～0.6を示したのは83.6％であったが、検出度0.7以上を示したのは16.4％であったことから、今回のやや高い陽性率は、検
出度の高い範囲に区分された陽性者の増加を反映している
のかもしれない。更に男性陽性者20名中10名が検出
度0.4～0.6の範囲にあったことも、男性陽性者の増加に
影響を及ぼしたもう一つと考えられる。なお、女性の陽性者を
対象にして統計的検討を試みたところ、時間変化の検討
（傾向性の検定）の結果、陽性度0.1未満で有意差が認め
られた。すなわち黄色ブドウ球菌は、従前の調査結果と
比較して統計的にも上昇傾向にあった。この傾向が単年
度のみのものか、アレルギー性鼻炎患者の上昇と連関し
て徐々に進行していくのか、今後調査を継続して検討す
る。

季節ごとの黄色ブドウ球菌陽性率は、前回の調査結果10)よりや
や高いものの、春期：16.6％、夏期：20.4％、秋期：
19.4％、冬期：19.1％を示し、季節別の陽性率には有意
差は認められなかった。

2. アンケート調査
アンケートの回収率は100％であった。黄色ブドウ
球陽性者126名中、何らかのアレルギー性鼻炎を既往に持
つものは81名（男性12名、女性69名）64.3％（81/126）であ
り、陰性者186名（男性20名、女性166名）
のそれは100名（男性9名、女性91名）53.8％（100/186）であ
ったがしく、陽陽者をアレルギー性鼻炎既往
率は、陰性者のそれと比べて1.2倍高かった。この結果
は、前回の調査結果11)（16.9倍: 72.6/42.9）よりやや低
いか、計511名を対象にした2度の調査結果から、黄色
ブドウ球陽性者の約2/3はアレルギー性鼻炎の既往歴を有
していた。

黄色ブドウ菌陽性者と既往のアレルギー性鼻炎との関連性につ
いては、前回の調査12)と同様に、陽性者、陰性者に区分し
て既往のアレルギー性鼻炎の有無で見たマスター・テーブル
を作成して、Yates補正のχ2検定を実施した。
その結果、前回の調査結果と同様に、黄色ブドウ菌の有無と
アレルギー性鼻炎既往の有無との間には、アトピー性皮膚炎、
アレルギー性鼻炎及びアレルギー性喘息との関
で、統計学的に危険率5％未満の有意差が見られた。更
に、アレルギー性鼻炎の症例の1つであるくしゃみ（危
険率5％未満）との間に、またアレルギー性喘息既往の1
つとしてペットの毛（危険率1％未満）との間に有意差が
見られた。その他のアレルギー性鼻疾患（食物アレルギー、
接触アレルギー、薬物アレルギー）との間には、前回の調査
結果12)と同様に黄色ブドウ菌保有との間には、有意差は認め
られなかった。更に、前回の調査で、黄色ブドウ菌保有との間
に有意差が認められた花粉症及びその症状（くしゃみ、鼻
水、目のかゆみなど）との間に有意差は認められなかっ
た。

これらの結果は、今回の調査結果は前回のそれ
とは多少傾向を異にするが、Table 1に示したように、
前回と同様に、黄色ブドウ菌の検出度（陽性回数/検査回数）
とアレルギー性鼻炎仮既往の有無との関連で見たオッズ比
（相対危険度）は、検出度にかかわらず1以上を示した。

Table 1. Relative Risk (Odds Ratio) between Positivity1)
of Staphylococcus aureus and History of Allergic
Diseases

<table>
<thead>
<tr>
<th>Positivity2)</th>
<th>Odds ratio</th>
<th>I</th>
<th>II</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1～0.39</td>
<td>1.02</td>
<td>27</td>
<td>49</td>
<td>0.63, 1.71</td>
</tr>
<tr>
<td>0.4～0.69</td>
<td>1.21</td>
<td>30</td>
<td>46</td>
<td>0.65, 1.83</td>
</tr>
<tr>
<td>0.7～1.00</td>
<td>1.44</td>
<td>24</td>
<td>31</td>
<td>0.65, 2.10</td>
</tr>
</tbody>
</table>

1) Relative number of positive detections of S. aureus
2) No. of persons having a history of allergic diseases

サラゲッソムと風邪罹患との関係は、前回の調査
結果とは異なり、両者の間に危険率0.1％未満で有意差
(χ2値：30.33)が認められた。すなわち、黄色ブドウ菌陽性
者126名中、検査時に風邪罹患していると答えたもの
は65名(51.6％)で、陰性者186名の風邪罹患者39名
(21％)よりはるかに多かった。更に、この傾向は、秋期、
冬期の調査結果にも認められた。

3. 総IgE抗体検査と血液検査

1) 採血者98名（男性18名、女性80名）中、黄色
ブドウ球陽性者は69名、陰性者は29名であった。このうち
アレルギー性鼻炎の既往者は65名(66.3％)、既往歴を有
しない者は33名(33.7％)であった。黄色ブドウ球陽性
者69名のうち、アレルギー性鼻炎既往者は49名(71.0％)で
、既往歴を有しない者は、20名であった。一方、黄色ブド
Table 2. Average Titers of Total Serum IgE Antibodies and the Hemogramme Patterns in Persons Grouped by Positivity\(^1\) of *Staphylococcus aureus*

<table>
<thead>
<tr>
<th>Positivity(^1)</th>
<th>Total IgE (ng/mL)</th>
<th>Hemogramme (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stab</td>
</tr>
<tr>
<td>0</td>
<td>7.56 ± 5.63</td>
<td>2.14 ± 0.88</td>
</tr>
<tr>
<td>0.1~0.39</td>
<td>20.74 ± 24.08</td>
<td>3.09 ± 1.74</td>
</tr>
<tr>
<td>0.4~0.69</td>
<td>15.01 ± 11.86</td>
<td>2.21 ± 1.47</td>
</tr>
<tr>
<td>0.7~1.00</td>
<td>15.27 ± 18.14</td>
<td>2.74 ± 1.63</td>
</tr>
<tr>
<td>0.1~1.00</td>
<td>14.44 ± 18.44**</td>
<td>2.48 ± 1.63</td>
</tr>
</tbody>
</table>

\(^1\) Relative number of positive detections of *S. aureus*

Table 3. Correlation between the Average Titers of Total Serum IgE Antibodies and the Hemogramme Patterns in *Staphylococcus aureus* Carriers

<table>
<thead>
<tr>
<th>Total IgE</th>
<th>Stab</th>
<th>Seg</th>
<th>Eosin</th>
<th>Baso</th>
<th>Mono</th>
<th>Lymph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stab</td>
<td>-0.063</td>
<td>0.190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seg</td>
<td>0.095</td>
<td>-0.170</td>
<td>-0.250**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eosin</td>
<td>0.241*</td>
<td>0.085</td>
<td>0.073</td>
<td>0.094</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baso</td>
<td>-0.006</td>
<td>-0.269**</td>
<td>-0.311**</td>
<td>0.146</td>
<td>-0.092</td>
<td></td>
</tr>
<tr>
<td>Mono</td>
<td>0.054</td>
<td>-0.935***</td>
<td>-0.037</td>
<td>-0.134</td>
<td>0.123</td>
<td></td>
</tr>
<tr>
<td>Lymph</td>
<td>-0.173</td>
<td>-0.225*</td>
<td>-0.935***</td>
<td>-0.037</td>
<td>-0.134</td>
<td>0.123</td>
</tr>
</tbody>
</table>

Table 3 に、黄色ブ菌陽性者の総 IgE 抗体値と血液像パターンの間で検討した相関分析結果を示した。総 IgE 抗体値と好酸球数の間には、有意な相関（危険率 5% 未満）が認められ、好中球と好酸球間で、単球と好中球及び棒状球との間で、それぞれ危険率 1% 未満の負の相関が見られた。また、リンパ球と棒状球及び好中球間にそれぞれ

Fig. 1. Correlation between serum levels of total IgE and SEB-specific IgG antibodies (in students with a history of allergic diseases)

O.D.: optical density
5％，0.1％未満の危険率で負の相関が認められた。アレルギー性疾患罹患者、特にアトピー性皮膚炎患者の総IgE抗体価の高値に伴う好酸球数の変動については既に多くの報告がなされている。

黄色ブ菌陽性者はアレルギー性疾患罹患者と類似した血清像パターンを示し、更に陽性者にはアレルギー性疾患既往が多いという結果を考慮すると、やはり黄色ブ菌の保有とアレルギー性疾患既往との間には何らかの関係があると考えられる。

4. SEA、SEBに対する特異的IgE抗体とSEB特異的IgG抗体検査

採血者98名のSEB特異的IgG抗体の吸光度の平均値は0.247±0.072であった。黄色ブ菌陽性者と陰性者の平均SEB特異的IgG抗体の吸光度は、それぞれ0.250±0.070（N=69）、0.250±0.060（N=29）。アレルギー性疾患既往の有無で区分した血清中のSEB特異的IgG抗体の吸光度はそれぞれ0.254±0.076（N=65）、0.235±0.064（N=33）を示し、いずれも両者の平均値間に有意差は認められなかった。

Fig.1 にアレルギー性疾患既往者の総IgE抗体価とSEA、SEB特異的IgG抗体の吸光度についての散布図を示した。図から明らかのように測定値の分布は、総IgE抗体価が低いSEB特異的IgG抗体の吸光度がそれぞれに高い群（N=6及びN=3）とSEB特異的IgG抗体の吸光度が0.1以上0.4未満と総IgE抗体価30 ng/mL以下の群（N=56）の3つの群に分けられた。アレルギー性疾患既往65名の両抗体値間には有意な相関は認められなかったが、両抗体価が高い9名を除くグループ56名の総IgE抗体価（平均11.61±7.35）とSEB特異的IgG抗体の吸光度（平均0.242±0.057）の間には、危険率5％未満の有意な相関関係が認められた。また、アレルギー性疾患既往のない群と黄色ブ菌陽性者及び陰性者の3群の各々の総IgE抗体価とSEB特異的IgG抗体の吸光度の間にも、相関関係は認められなかった。全採血者からSEB特異的IgG抗体は検出され、その測定値は低値であり、黄色ブ菌陽性者、陰性者間の平均SEB特異的IgG抗体の吸光度に差が見られなかったことから、このIgG抗体の多くは、腸管内に常在する黄色ブ菌によって産生されるSEBに対する抗体であるのかもしれない。

Table4 にSEA、SEBに対しての特異的IgE抗体を保有した者（15名）と上記の総IgE抗体、SEA、SEB特異的IgG抗体の高値を示したグループ（9名）の各測定値及び既往のアレルギー性疾患患者などについての、SEA、SEBに対する特異的IgE抗体価（IA/mL）の判定基準値は、使用Kitに示された基準に準拠し、0.35以下を陰性、0.35～0.69を1+ 陽性、0.70～3.49を2+ 陽性、3.50～17.4を4+ 陽性と判定した。表から明らかに、SEB特異的IgE抗体価の保有者は6名、SEA、SEB両特異的IgE抗体の保有者は14名、SEA、SEB両特異的IgE抗体の保有者は8名、SEA及びSEBどちらか一方の特異的IgE抗体保有者は10名であった。SEAあるいはSEB特異的IgE抗体が検出された15名（20.7%）の中で黄色ブ菌陽性者有は11名（73%）、アレルギー性疾患既往者有は12名（80%）であった。一方、採血者98名の平均値よりはるかに高い総IgE抗体価を示した6名は、全員が黄色ブ菌陽性でありアレルギー性疾患の既往者であった。

SEA特異的IgE抗体に比べてSEB特異的IgE抗体の検出度は高かったのは、鼻腔に定着する黄色ブ菌がSEAよりもSEBを多く産生するものが多い（SEA産生株：25.4％、SEB産生株：40.3％）ことを1つのファクターとして挙げているかもしれない。

黄色ブ菌陽性者でSEAあるいはSEBの特異的IgE抗体が検出された15名の中には、アトピー性疾患、アレルギー性鼻炎及び花粉症を既往とする者が多かった（50％）。そしてその血清像パターンで、好中球の占める割合は高く、リンパ球の割合は高く、リンパ球と好中球間の相関も見られ、アレルギー性疾患罹患者が示す血清検査結果に類似していた。しかし、アレルギー性疾患、特にアトピー性皮膚炎患者の総IgE抗体価や特異的IgE抗体価及びその検出度に比べると、黄色ブ菌陽性者では、全無で鼻粘膜を傷つけ、その障害部位からエンドトキシンの体内浸入を許している可能性もあるだろう。そして侵入したSEA、SEBはスーパー抗原活性を介して種々の免疫細胞に作用し、各種のサイトカインを誘導し組織障害及び体内での免疫応答、特に抗体産生系を活性化させているのではないかと思われる。

以上、黄色ブ菌保有とアレルギー性疾患既往間の密接な関係は、今回このアンケート結果からも確かめられた。更に、黄色ブ菌陽性者を陰性者に比べて有意に高く、陽性者の血清像パターンはアレルギー性疾患罹患者の間に類似性が見られ、陽性者の中にはSEA、SEB特異的IgE抗体が認められた。これらの結果は黄色ブ菌保有とアレルギー性疾患既往間の統計学的な有意性、更にはアンケート結果を再び裏付けており、アトピー性疾患、花粉症、アレルギー性鼻炎及びアレルギー性喘息などの既往者は、既往歴を有しない者に比べて、黄色ブ菌の検出度が高かったことがから（検出度0.7〜1.0を示したのは、アレルギー性疾患既往者では29.6％、既往歴を有しない場合は、14.4％）アレルギー性疾患既往者は黄色ブ菌に感受性が高く、鼻腔に多くの黄色ブ菌が定着していることが確認され、

黄色ブ菌の保有とアレルギー性疾患既往者の間には、密接な関係が示唆されたが、両者間にかかわる機構が関与しているかは明らかではない。しかし、アレルギー性疾患既往者に対しても、黄色ブ菌についての適切な衛生教育が必要であり、特に食品の取り扱いについては注意を促す指導が必要である。
Table 4. History of Allergic Diseases in Persons who have Higher Specific IgE Antibodies to SEA and SEB, Specific IgG Antibodies to SEB and Total IgE Values

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sex</th>
<th>S. aureus P/T<sup>1</sup></th>
<th>Allergy</th>
<th>Pollinosis</th>
<th>Atopic dermatitis</th>
<th>Allergic rhinitis</th>
<th>Contact dermatitis</th>
<th>Drug allergy</th>
<th>Food allergy</th>
<th>Specific antibodies</th>
<th>IgE to</th>
<th>Total IgE</th>
<th>Hemogramme<sup>2</sup></th>
<th>Stab</th>
<th>Seg</th>
<th>Eosin</th>
<th>Baso</th>
<th>Mono</th>
<th>Lymph</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>7/7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0.40 0.26 25.73</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>63</td>
<td>12</td>
<td>0</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>7/7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>1.13 0.17 11.24</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>74</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>6/7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>1.94 1.08 4.61</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>49</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>5/7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0.37 2.95 0.21</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>66</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>4/7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>0.59 0.34 17.43</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>68</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>4/7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>2.95 0.35 11.71</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>76</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>3/7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>283 4.02 0.20 63.54</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>75</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>1/7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0.93 1.33 0.24 69.07</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>81</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>1/7</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>1.30 1.52 0.35 27.75</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>73</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>1/5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0.66 0.14 4.99</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>66</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>1/5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0.65 0.20 17.98</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>62</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>0/5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>0.63 0.31 8.69</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>65</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>0/5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>0.41 0.29 9.07</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>60</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>0/5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>4.15 0.20 2.49</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>53</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>0/5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>0.37 0.31 2.31</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>66</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>7/7</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.18 71.34</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>48</td>
<td>13</td>
<td>1</td>
<td>10</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>6/7</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.27 66.19</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>78</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>2/7</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.22 70.09</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>68</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>1/7</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.37 76.65</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>70</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>F</td>
<td>0/5</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.48 3.17</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>75</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>21</td>
<td>F</td>
<td>1/7</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.48 9.99</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>72</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>22</td>
<td>F</td>
<td>6/7</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.50 7.72</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>38</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>53</td>
</tr>
</tbody>
</table>

¹ P/T: No. of positive samples of S. aureus/No. of tested samples

² See Table 2 for abbreviations
が望まれる。

謝辞
検査結果の統計解析にご指導を賜った東京都立衛生研究所、牧野國義博士に深謝いたします。

文献