Laboratory-performance Study of the Notified Methods to Detect Genetically Modified Maize (CBH351) and Potato (NewLeaf Plus and NewLeaf Y)

Takahiro Watanabe*1,†, Kikuko Kasama*3, Chiseko Waku*1, Masaaki Shibuya*2, Akihiko Matsuki*3, Hiroshi Akiyama*1 and Tamio Maitani*1

(*1National Institute of Health Sciences: 1–18–1, Kamiyoga, Setagaya-ku, Tokyo 158–8501, Japan; *2Graduate School of Pharmaceutical Sciences, The University of Tokyo: 7–3–1, Hongo, Bunkyo-ku, Tokyo 113–0033, Japan; *3Hatano Research Institute, Food and Drug Safety Center: 729-5, Ochiai, Hadano, Kanagawa 257–8523, Japan; †Corresponding author)

To investigate the key factors affecting the reliability of the analytical results, a laboratory-performance study was attempted for the notified methods to detect genetically modified (GM) maize (CBH351) and GM potato (NewLeaf Plus and NewLeaf Y). The test samples were designed as three pairs of blind duplicates, which included 0%, 0.1% and 1.0% GM maize (CBH351) or GM potato (NewLeaf Plus or NewLeaf Y). Fourteen laboratories participated in the study. The test samples were sent to the participating laboratories along with the protocol. The data were collected from all laboratories and statistically analyzed. For the 0% sample of the CBH351 maize, one laboratory reported a false-positive result. It was considered that contamination could have occurred via the common use of equipment or tools for the test. For the 0.1% samples of the NewLeaf Plus potato or NewLeaf Y potato, on the other hand, three laboratories reported false-negative results. It was presumed that these results were due to changes of the conditions of the electrophoresis and agarose-gel staining. The other laboratories reported appropriate results. It was considered that the method employed in this study was suitable for the assessment of laboratory performance.

(Received May 23, 2003)

Key words: 遺伝子組換えトウモロコシ genetically modified maize; 遺伝子組換えジャガイモ genetically modified potato; 検査方法 detection method; ポリメラーゼ連鎖反応 PCR; 外部精度管理 laboratory-performance study
精度管理は「内部精度管理」と「外部精度管理」に分類され、前者は成機間での精度の均一化を目的とし、後者は機間間での均一化を目的とする。一般に機間間で見られる試験結果のばらつきを機間内で均一にできることが多い。GM による検査実施により、より一定の検査方法における機間間のばらつきの程度など、その要因を把握すること、さらには、検査担当者が自己の技術を客観的に認識し、検査技術の維持向上図をつくることが極めて重要であると考えられる。しかしながら GM 食品分析検査方法に従来されている定性 PCR 法を対象とした外部精度管理方法においては、ほとんどの検査基準を満たすが、既存の外部精度管理方法が適用できるのかについての情報は少ない。本研究では、GM 食品分析検査方法を対象とする外部精度管理方法を検討するため、14 機間による試験実施を行い、統計的に、特性未知試料の分析結果の相互比較を通じて検査機間によるばらつきの程度ならびにその要因について詳細な検討を行った。さらに、これらの検討結果に基づき、外部精度管理における主目的とされる機間間の均一化に寄与する要因を明らかにすることが可能であったかを考察して報告する。

実験方法

1. 試 料

試験対象として選定した安全性審査が終了していない GM トウモロコシ Starlink (CBH351), 同ジャガイモ NewLeaf Y (SEMT 15〜15 系統, Shepody 種), 安全性審査の終了している GM ジャガイモ NewLeaf Plus (RBTM 21〜350 系統, Russet Burbank 種)、および 0% 試料として使用した非遺伝子組換え (non-GM) 試料 (ブラジル産トウモロコシ) は、厚生労働省食薬局食品保健部監視安全課を通じて入手した。0% 試料として使用した非-GM ジャガイモは、世田谷区内のスーパーマーケットで購入した国内産ジャガイモ (男爵) を使用した。

2. 試 薬

DNA の抽出精製に Qiagen 社製 DNeasy Plant Mini Kit (シリカゲル膜タイプキット) を用いた方法。また、セチルトリメチルアンリモニウムクロリド (CTAB) 法を用いた。CTAB は Sigma 社製を用いた。DNA ポリメラーゼとしてはアプライドバイオシステムズ社製の Amplitaq Gold を, dNTP, 10 × PCR bufferII ならびに塩化マグネシウムは, Amplitaq Gold に付属のものを用いた。アガロースとしては宝酒造 (株) 製 LO3 「TAKARA」を用いた。DNA マーカーとしては宝酒造 (株) 製 100 bp ラダーを用いた。水は日本ミリオナ株式会社製 Milli-Q Synthesis A10 で精製した超純水を L20°C, 20 分の条件でオートクレープ滅菌したものを用いた。他の試薬はすべて市販の特級品を用いた。

3. 機 器

試料粉末・混合機: MM-200 (Retch 社製), 恒温槽: ドライサーモユニット DTU-1B (タイテック社製), 冷却遠心機: Avantii HP25 (Beckman 社製), 卓上遠心機: KR-1000 (ファクン社製), タッチイキサ: MT-51 (ヤマト (株) 製), 分光光度計: Gene Quant II (Pharmacia Biotech 社製), サーマルサイクライラ: GeneAmp PCR System 9700 (アプライドバイオシステムズ社製), 電気泳動装置: Mupid (アドベンス社製), ゲルイメージ解析装置: Diana システム (Raytest 社製)。

4. 試料の調製

入手したすべてのトウモロコシおよびジャガイモ試料を凍結乾燥処理した後に粒径が 500 μm (トウモロコシ), あるいは 200 μm (ジャガイモ) 均一になるよう粉碎した。非-GM トウモロコシおよびジャガイモについては、粉末試料の一部を分取し、食発第 158 号第 116 記載の定性 PCR 法を用いて増幅産物が得られないことを確認した後に 0% 試料とした。また、疑似混入試料については被験実験の混入率が重量換算で 0.1%, 1.0% となるよう 0% 試料をマトリックスとして混合し、調製した。混和試料は、Trappmann らおよび Kuribara らが報告している GM トウモロコシおよびダイズ疑似混入試料調製法を参考に、一部変更した。まず、均一に粉末した試料を再度凍結乾燥処理した。試料を落下して秤量した試料は、ブラストック製の袋に最小量を配分。袋中に十分な混合を行った後、ふろいにかけ、再び袋中で混合を繰り返した。この混合操作は合計で 3 回行った。混合操作後の粉末を悬浮溶液法で再度粉末した後、凍結乾燥処理した。疑似混入試料調製後、0% 試料ならびに疑似混入試料を 2 g (トウモロコシ) または 200 mg (ジャガイモ) となるよう、それぞれ 50 mL 容量分液管または 15 mL 容量分液管にひょう量分注した。分注した小分け試料数は参加機関数の約 4 倍数である 50 点とした。小分け試料の均一性について確認するため、小分け試料 1 種類につき 9 点を無作為選出し均一性試験を実施した。均一性試験においては、試料の均一性に加え、同一検査方法を用いて得られる結果の安定性についても確認することを目的に、すべての小分け試料を 3 機関 (国立基準食品衛生研究所 (国立衛研)、食品薬品安全センター (国立基準食品衛生研究所)、東京大学大学院) で分等試験を実施した。また、安定性試験は、国立衛研において各小分け試料 3 点を－20°C の条件で 1 か月間保存後、再度測定することによって実施した。

5. DNA 溶液の調製

トウモロコシおよびジャガイモの 0% 試料ならびに各疑似混入試料を検体とし、通過食発第 158 号第 116 記載の方法を遵守して DNA 溶液を調製した。また、抽出した DNA 溶液の吸光度を測定し、O.D. 260/280 nm の比を求め精製度の確認を行った。なお、この比が 1.7 以上であっ

*6 GM ジャガイモについては平成 15 年 7 月の時点でにおいて、申請のあったすべての系統の審査が完了している。
6. プライマー

食発第158号に記載のプライマーを使用した、トウモロコシを検体とした場合にCBH351に特異的に挿入されている発現カセット上の異なる領域に設計されており、それぞれ170 bp、171 bpの増幅産物を生じる検出用、確認用プライマー対を用いた試験、また同時に、トウモロコシゲノムに内在的に含まれる遺伝子であるZein遺伝子を標的遺伝子とし、157 bpの増幅産物を生じる対象プライマー対を用いた試験を実施した。ジャガイモを検体とした場合には、それぞれのGMジャガイモ系に特異的に挿入されている発現カセット上の異なる領域に設計されたNewLeaf Plus検出用および、確認用プライマー対、またはNewLeaf Y検出用および、確認用プライマー対を用いた。NewLeaf Plus検出用、確認用プライマー対はそれぞれ234 bp、172 bpの増幅産物を生じる。またNewLeaf Y検出用、確認用プライマー対はそれぞれ225 bp、161 bpの増幅産物を生じる。さらに同時に実施したジャガイモゲノムに内在的に存在するPatatin遺伝子を標的とした対象プライマー対を用いた試験においては216 bpの増幅産物を生じる。

7. PCR条件

食発第158号に記載の条件を遵守した。

8. 試験の実施

均一性の確認された小分け試料を乱数表を用いた無作為選出口を行った上で検体とし、blind duplicateとして14の参加機関に送付した。なお、検体名称および1機関当たりの検体総数ならびに内容は以下のとおりである。トウモロコシ：検体名称、トウモロコシ粉末；検体総数、6。（0%試料、0.1、1.0%各疑似混入試料2検体ずつ）ジャガイモ：検体名称、ジャガイモ凍結乾燥粉末；検体総数、10。（0%試料2検体、NewLeaf Plus0.1、1.0%各疑似混入試料2検体ずつ、NewLeaf Y0.1、1.0%各疑似混入試料2検体ずつ）また、検体送付時には、注記事項を含む実施要領、食発第158号に準じ作成した試験マニュアル、調査項目ならびに試験結果に対する報告方法を規定した各種報告様式を同送した。調査項目としては、検査全般については、遺伝子組換え食品の検査実績、検査実施環境および実験機器、器具共用の有無、各種機器のメーカー、使用したDNA抽出法、プライマーコックの合成ならびにグレード、電気泳動条件、染色方法を取り上げ、検査全般にわたって詳細な調査が行えるように配慮した。試験結果については、抽出されたDNAの吸光度（230、260、280 ならびに320 nm）と収量、さらに各種プライマー対を用いた試験において遺伝子増幅産物が得られたか否かを記載の上、結果を判定し、報告することとした。試験方法の作成に当たってはThompsonらによる報告ならびにAssociation of Official Analytical Chemists（AOAC）Internationalのマニュアルを参考にした。

結果および考察

1. 各種検体に対する均一性の確認および安定性試験

ジャガイモならびにトウモロコシ各0%試料ならびに0.1, 1.0%疑似混入試料を対象とした均一性試験結果の1例を、Fig. 1からFig. 3に示す。Fig. 1に示すように、NewLeaf Plus定量検出方法で採用されている検出用プライマー対と確認用プライマー対を用いた結果を比較すると、確認用プライマー試験区における増幅バンドの濃さが薄かった。これに対し、対照プライマー試験区で得られる増幅バンドの濃淡に試料による明確な差がないことから、

Fig. 1. Homogeneity of NewLeaf Plus samples

Lanes 1 to 3: Amplification of 0% samples; Lanes 4 to 6: Amplification of 0.1% samples; Lanes 7 to 9: Amplification of 1.0% samples

M: 100 bp ladder size standard
The detection and identification primer pairs amplify 234 and 172 bp fragments, respectively. The control primer pair, designed to detect an endogenous gene of potato (patatin gene), amplifies a 216 bp fragment. Arrows indicate the expected PCR amplification products.

Fig. 2. Homogeneity of NewLeaf Y samples

Lanes 1 to 3: Amplification of 0% samples; Lanes 4 to 6: Amplification of 0.1% samples; Lanes 7 to 9: Amplification of 1.0% samples

M: 100 bp ladder size standard
The detection and identification primer pairs amplify 225 and 161 bp fragments, respectively. The control primer pair, designed to detect an endogenous gene of potato (patatin gene), amplifies a 216 bp fragment. Arrows indicate the expected PCR amplification products.
この結果は、検出用プライマー対と確認用プライマー対で
達せられる增幅効率が異なることを示唆していると考えられ
た。また、NewLeaf Plusを対象とした試験結果と逆に、NewLeaf Yを対象とした試験結果では、確認用プライマー対に比べ、検出用プライマー対により得られる増幅
バンドの濃さが薄かった（Fig. 2）。この結果もまた、検出
用プライマー対と確認用プライマー対で達せられる増幅
効率が異なっていることを示唆していると考えられた。一
方、Fig. 3 に示すように、CBH351 を対象とした試験に
いては、ジャガイモの場合とは異なり、検出用、確認用
両プライマー対を用いて得られる結果に増幅効率の違いは
認められず、供した試料のすべてにおいて、ほぼ一の濃
さの増幅バンドが得られた。上記の結果は均一性試験を実
施した 3 機関共通して認められ、このことは、方法として
用いた検査方法により安定した結果が得られる
ことを示唆している。また、調製後の各試料は分注し 50
点的小分け試料としたが、その 18% に当たる 9 点の小分
け試料において同様の結果が得られたことから、いずれの
試料においても均一性が確認できたものと考えられた。
また結果は示していないが、検体送付日から 1 か月間
～20℃の条件で各小分け試料 3 点を保存し、それらを対
象に均一性試験と同様の試験を行った結果、均一性試験に
いて得られた結果と同一の結果を得た。このことから試
験期間中の試料の安定性が示唆された。

2. 抽出 DNA の収量ならびに精製度
トウモロコシならびにジャガイモ検体について、各機関
において抽出された DNA の収量ならびに吸光度比 (O.D.
260/280 nm) を基準とした精製度についての結果を Fig. 4
ならびに Fig. 5 に示す。Fig. 4 は、トウモロコシ検体

（a）

Fig. 4. Yield (a) and quality (b) of DNA in sample solution extracted from maize samples with silica-membrane type kit
(a): DNA concentration; (b): Ratio of UV absorption at 260 nm to that at 280 nm
Fig. 5. Yield (a) and quality (b) of DNA in sample solution extracted from NewLeaf Plus potato samples with silica-
membrane type kit.
(a) DNA concentration; (b) Ratio of UV absorption at 260 nm to that at 280 nm

を対象に DNeasy Plant Mini Kit 法を用いて DNA 抽出を行った結果である。食発第158号中では、トウモロコシからの DNA 抽出法として DNeasy Plant Mini Kit（シリカゲル膜タイプキット）法に加え、CTAB 法が併記されており、3 機関において CTAB 法が使用されていた。この 2 法の分析結果を比較するため、1 検体当たりの平均収量（DNA 濃度）、ならびに平均精製度（O.D. 260/280 nm）を算出し比較すると、DNeasy Plant Mini Kit 法においては平均収量が 119 μg/μL、平均精製度が 1.72 であったのに対し、CTAB 法においては平均収量が 106 μg/μL、平均精製度が 1.56 であった。平均収量はほぼ同等と判断されるが、平均精製度に若干の差異が認められる。これらを CTAB 法を用いて DNA 抽出を実施した 3 機関のうち、1 機関における精製度が極めて低かった（1.2）ためであり、抽出操作が煩雑であるため実験者の中間が結果に反映されやすいとされる CTAB 法の特徴が現れた結果であると考えられる。

一方、ジャガイモからの DNA 抽出法は DNeasy Plant Mini Kit を用いた方法が指定されている。Fig. 5 は NewLeaf Plus を対象検体とする結果であるが、NewLeaf Plus と NewLeaf Y の各検体間で明確な差異は認められなかった。また Fig. 5 には検体数として示されているが、収量、精製度共に若干のばらつきが認められる。これらにより、収量、精製度共に低めの数値を報告している機関は検体によらず一定であった。DNeasy Plant Mini Kit を用いた DNA 抽出法においては、試料から粗精製液を分離する操作が含まれているが、この分離が不十分であると収量、精製度が共に減少する。これら手技的な不備が該当機関での結果に影響を与えている可能性が高く推定される。

さらに、トウモロコシとジャガイモから抽出された DNA の収量ならびに精製度を比較した場合、収量、精製度共にジャガイモがトウモロコシに比べ若干劣る結果となった。これはトウモロコシとジャガイモという試料の違いに加え、抽出法の内容（初発材料量および抽出緩衝液の量など）が異なるため、これらの差異が結果に影響したものと考えられた。

3. トウモロコシ検体を対象とした試験
Table 1 に示すように、トウモロコシ検体を対象とした試験の結果、0.1% ならびに 1.0% 疑似混入試料については、14 機関で試験に供された各 2 検体（計 8 検体）すべてが陽性と正しく判定された。しかし、0% 試料（non-GM 検体）については、28 検体中 4 検体において CBH351 検出用プライマー対を用いた試験で増幅産物が確認され、つづいて確認用プライマー対を用いた試験においても、2 検体について増幅産物が確認された。Table 3 には検体ごとの正答率を示しているが、上記両プライマー対を用いて増幅産物が確認された 2 検体は同一機関（機関
Table 1. Results of Laboratory-performance Study for Testing CBH351 Maize

<table>
<thead>
<tr>
<th>Primers</th>
<th>Maize samples</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>non-GM</td>
<td>CBH351</td>
</tr>
<tr>
<td></td>
<td>0.1%</td>
<td>1.0%</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Control</td>
<td>Zein n-5’, Zein n-3’</td>
<td>28/28</td>
</tr>
<tr>
<td>Detection</td>
<td>CaM03-5’, CMB02-3’</td>
<td>4/28</td>
</tr>
<tr>
<td>Identification</td>
<td>Cry9C-5’, 35Ster-3’</td>
<td>2/4</td>
</tr>
</tbody>
</table>

+: positive; -: negative

First PCR was performed with the control primer pair and detection primer pair.
When the result was positive, a second PCR was performed with the identification primer pair.

Table 2. Results of Laboratory-performance Studies for Testing NewLeaf Plus and NewLeaf Y Potato

<table>
<thead>
<tr>
<th>Primers</th>
<th>Potato samples</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>non-GM</td>
<td>NewLeaf Plus</td>
</tr>
<tr>
<td></td>
<td>0.1%</td>
<td>1.0%</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Control</td>
<td>Pss 01n-5’, Pss 01n-3’</td>
<td>28/28</td>
</tr>
<tr>
<td>Plus detection</td>
<td>p-FMV02-5’, PLRV01-3’</td>
<td>2/2</td>
</tr>
<tr>
<td>Plus identification</td>
<td>PLRV-rep1-5’, PLRV-rep1-3’</td>
<td>0/2</td>
</tr>
<tr>
<td>Y detection</td>
<td>p-FMV05-5’, PVY02-3’</td>
<td>0/28</td>
</tr>
<tr>
<td>Y identification</td>
<td>PVY01-5’, PVY01-3’</td>
<td>\</td>
</tr>
</tbody>
</table>

+: positive; -: negative; \: no test

First PCR was performed with the control primer pair and detection primer pair.
When the result was positive, a second PCR was performed with the identification primer pair.

1) によって試験されており、それゆえ当該機関からの報告は掲陽性となる。検査実施環境、使用機器ならびに器具などの使用状況、遺伝子組換え食品以外の微生物などを対

象とした試験との共用の有無についてのアンケート調査の結果、機関Ⅰにおいては電気泳動ならびにゲルイメージ解析を実施する検査実施環境や、遠心機、ビペット類、

PCR 装置といった広範な使用機器、器具の共用があることが明らかとなった。このことから、掲陽性を生じる原因は、検査実施環境やビペット類などの共有によるコンタミネーションにあると考えられた。PCR 法はその反

応に培養基配列の注目関数の増幅過程が含まれているため、ごく微量であってもその反応の錯型となりうる DNA がコンタミネーションを起こすことにより試験結果に

大きな影響を及ぼす。本研究において対象とした定性 PCR 法に限らず、PCR 法を用いた GM 食品を対象とした試験において正確な試験結果を得るために、検査実施環

境ならびに機器、器具類を GM 食品 PCR 法に特化させ、またさらには、各操作段階に応じて専有化を図ることが望

ましいと考えられた。特に検査実施環境については、遺伝

子組換え食品の検査に限っても、被検試料粉体、錬型

DNA、そして PCR 増幅産物によるコンタミネーションが

考えられるため、これを予防するために明確な区分を設

けることが肝要だと思うわれる。

4. ジャガイモ検体を対象とした試験

Table 2 に示すように、ジャガイモ検体を対象とした試

験の結果においても、0% 試料ならびに NewLeaf Y

0.1% 疑似混入試料について NewLeaf Plus 検出用プライ

マーー対を用いた試験の結果、それぞれ 2 検体において増

幅産物が検出された。この結果も、前述のトウモロコシの

結果について考察した原因と同様に、検査実施環境やビ

ペット類などの共有によるコンタミネーションに原因があ

るものと推察された。なお、当該検体については New-

Leaf Plus 確認用プライマーー対を用いた試験においては増

幅産物が検出されなかったため、陰性判定とされていた。

検出用プライマーー対により増幅産物が得られ、確認用プラ

イマーー対によっては得られなかったという結果は、コンタ

ミネーションの原因として通常考えられる被検試料の粉末

や錬型 DNA に加え、検出用プライマーー対により増幅され

た産物が原因である可能性が高いことを示唆している。

一方、NewLeaf Plus 1.0% 疑似混入試料については、
Table 3. Percentage of Correct Results for All Test Samples in Laboratory-performance Studies

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Percentage of correct results</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Maize sample: 100%</td>
</tr>
<tr>
<td>B</td>
<td>Potato sample: 100%</td>
</tr>
<tr>
<td>C</td>
<td>Maize sample: 100%</td>
</tr>
<tr>
<td>D</td>
<td>Potato sample: 100%</td>
</tr>
<tr>
<td>E</td>
<td>Maize sample: 100%</td>
</tr>
<tr>
<td>F</td>
<td>Potato sample: 100%</td>
</tr>
<tr>
<td>G</td>
<td>Maize sample: 100%</td>
</tr>
<tr>
<td>H</td>
<td>Potato sample: 100%</td>
</tr>
<tr>
<td>I</td>
<td>Maize sample: 100%</td>
</tr>
<tr>
<td>J</td>
<td>Potato sample: 60%</td>
</tr>
<tr>
<td>K</td>
<td>Maize sample: 80%</td>
</tr>
<tr>
<td>L</td>
<td>Potato sample: 80%</td>
</tr>
<tr>
<td>M</td>
<td>Maize sample: 100%</td>
</tr>
<tr>
<td>N</td>
<td>Potato sample: 100%</td>
</tr>
</tbody>
</table>

マスクで表示したものは、false-positive resultsを示しています。

28 検体すべてが正しく陽性と判定された。しかしながら、0.1% 疑似混入試料については、NewLeaf Plusにおいて7検体、NewLeaf Yにおいて2検体がそれぞれ陰性と判定された。またNewLeaf Yについては1.0%疑似混入試料においても1検体が陰性と判定された（Table 2）。これら陽性判定はNewLeaf Plusの場合には確認用プライマー対、NewLeaf Yの場合には検出用プライマー対を用いた試験において増幅産物が検出されなかったことによるものであり、陽性判定した検出用プライマー対が確認用プライマー対における増幅効率の差異を反映した結果と考えている。特にFig. 1に認められるように、NewLeaf Plus確認用プライマー対で検出用プライマー対を用いて0.1%疑似混入試料を対象としての試験を行った場合に得られる増幅バンドは、本論文中に記載されたすべての増幅バンドの中で最も薄い。このこととはNewLeaf Plus確認用プライマー対における増幅効率がNewLeaf Y検出用プライマー対に比べても低下、NewLeaf Plusにおける誤判定件数が高まった主原因ではないかと考えられる。さらに、これら増幅効率の差異に加えて、0.1%という検知下限値に近い混入率の検体を対象とする場合には、陰性判定が検出される危険性が高いことも示唆された。

また、Table 3に示すように、陰性判定を不した機関は3機関に限定されていた。回収したアンケート調査から、これから3機関においては電気泳動時間ならびに泳動後のエチジウムブロミドによる染色時間がそれぞれ15分程度と、検査方法に示されている時間に比べ明らかに短いことと、さらに、色後ろの電気泳動操作を行っていないことが明らかとなった。定量PCR法においては電気泳動時に分子量マーカーを同時に泳動し、これとの比較によって増幅産物のサイズを推定し、特異的な増幅が行われていることを確認する。しかし、泳動時間が短い場合、この比較を正確に行うことができず、泳動時間による確認を行うことが困難となる。また、増幅産物の量が少ない場合には染色時間が短いことにより、十分に染色されず、さらにこれは染色操作を行わないことにより、バックグラウンドとの区別がつきにくくなることが考えられる。以上の調査結果は、遺伝子増幅産物の分離が不十分でかつ染色が不適切であったため、増幅産物を正確に可視化することはできず、誤判定を下した可能性が高いことを示唆しているものと推察された。以上の結果ならびに考察から、当該検査方法を用いて0.1%混入率付近の検体を検査した場合、電気泳動条件や染色条件が要因となり、判定が変動することが示唆された。

ま と め

遺伝子組換え食品性検査方法を対象とした外部精度管理方法を検討することを目的とし、0%試料ならびに疑似混入試料を調製し、共通未知試料として14の協力機関に配布し、同一時期に分析を依頼した。その際得られた情報に基づき、結果のばらつきの要因を解析した。各協力機関で得られた分析データを詳細に解析した結果は、配布試料の内容および均一性試験の結果から予想された結果とおおむね一致した。さらに、予想されなかった結果が実測された事例に関しては、本検査と同時に実施した多項目にわたるアンケート調査から、検査実施環境、使用器具ならびに器具の専有化、電気泳動条件、染色条件といった検査方法に含まれる解決すべき不備に起因する結果であることが推察された。参加機関において得られた結果を客観的に比較し、さらに検査結果の均一性に寄与する問題点を指摘することが可能であったことから、当該検査方法に対する外部精度管理方法の例を示すことができたと考えられる。特に、試験に加えてアンケートを実施することとは、検査に携わるすべての機関に有益な情報を与えることになるため、方法として非常に効果であると考えられる。

当該検査方法を用いた検査の結果に基づき、我々においては遺伝子組換え食品の規制が行われているため、当該検査方法が正しく用いられていることを確認するためにも、外部精度管理方法を確立することは重要である。また、継続的な外部精度管理を実施し、客観的な評価に基づき試験機関が定期的に評価され、さらなる改善を進めていくことは大切であると考えられる。

謝 辞

本研究は、平成13年度厚生労働科学研究補助金により実施した。本研究にご協力いただいた検査機関諸氏に深謝。
文 献
1) 厚生省告示第232号(2000) “食品添加物等の規格基準の一部改正”平成12年5月1日
2) 厚生省告示第233号(2000) “組換えDNA技術応用食品及び添加物の安全性審査の手続き”平成12年5月1日
3) 厚生労働省雇用局食品安全局“組換えDNA技術応用食品の検査方法について”平成13年3月27日、発第110号(2001)
4) 厚生労働省雇用局食品安全局“組換えDNA技術応用食品の検査方法について（一部改正）”平成13年5月25日、発第158号(2001)
5) 厚生労働省雇用局食品安全局“組換えDNA技術応用食品の検査方法について（一部改正）”平成14年4月30日、発第0430001号(2001)