Inhibitory Effects of Acidic Xylooligosaccharide on Stress-induced Gastric Inflammation in Mice

(Received May 21, 2006)

Kyoji YOSHINO*1,†, Naoki HIGASHI*2 and Kunimasa KOGA*3

(*1Department of Chemistry and Biochemistry, Numazu College of Technology: 3600, Ooka, Numazu, Shizuoka 410–8501, Japan;
*2Graduate Schools of Human Health Science, Tokyo Metropolitan University: 3–6–33, Azuma-cho, Akishima, Tokyo 196–8540, Japan;
*3Department of Biological Science and Technology, Tokai University, 317, Nishino, Numazu, Shizuoka 410–0395, Japan; † Corresponding author)

The preventive effects of acidic xylooligosaccharide prepared from xylan of corncobs and related sugars on stress-induced gastric inflammation in mice were investigated. Oral administration of acidic xylooligosaccharide and hydrocortisone at doses of 100 and 200 mg/kg body weight significantly reduced the number of bleeding points in the gastric mucosa of mice loaded with cold-restraint stress. Acidic xylooligosaccharide showed concentration-dependent superoxide anion radical-scavenging activity at concentrations of 3.3–4.3 mg/mL and its IC50 was 3.5 mg/mL, although this value is approximately six times that of quercetin. The antioxidant activity of acidic xylooligosaccharide could contribute, in part, to its suppressive activities on stress-induced mouse gastritis. Xylose, xylobiose, xylan, and glucuronic acid showed no significant suppressive activities on mouse gastric inflammation at a dose of 100 mg/kg body weight. These results suggest that an appropriate degree of polymerization of xylan (larger than trimer) is necessary for the activities of acidic xylooligosaccharide.

Key words: acidic xylooligosaccharide; mouse; stress; gastritis; inflammation; antioxidant activity

Introduction

Xylan is a major constituent of plant hemicellulose and one of the main components of dietary fiber. Corncobs, bagasse, cereals, bamboo shoots, mushrooms, and cotton hull bran include particularly high levels of xylan. The structure of xylan is variable, ranging from a linear 1,4-β-linked polyxylose chain to highly branched heteropolysaccharides. The main chain of xylan is composed of β-xylose with 1,3-α-linked or 2,1-α-linked branches consisting of L-arabinofuranose at the O-3 positions of β-xylose residues, and of β-glucuronic or O-2-methyl-D-glucuronic acid at the O-2 positions of β-xylose residues. In some cases, xylan is acetylated at the same positions of β-xylose residues1). Xylan from Hericium erinaceum2 and acidic xylans, including glucuronic acid and 4-O-methylglucuronoxylan, from wood hemicellulose3 show strong suppressive activities against various tumors. Anti-inflammatory activities of 4-O-methylglucuronoxylan from Chamomilla recutita4 and acidic, highly branched heteroxylan from Plantago species5, 6 were also reported. These findings suggest that polysaccharides consisting of xylose and glucuronic acid residues and their degradation products can ameliorate some inflammatory diseases. Xylooligosaccharide, a linear polymer of 1,4-β-linked xylose, is produced industrially by enzymatic degradation of solubilized xylan. It has also been reported that xylooligosaccharide exhibits various beneficial effects, such as improving intestinal condition7, decreasing putrefaction products in the intestine8, reducing blood cholesterol level, and suppressing blood glucose level9. An acidic xylooligosaccharide consisting of a linear polymer of 1,4-β-linked xylose bound with glucuronic acid is a byproduct of the production of xylooligosaccharide. However, there have been few reports about its beneficial effects. This oligosaccharide is a water-soluble white powder and has a fresh acidic taste. In view of the recent increase in the incidence of various inflammatory diseases, such as digestive tract ulcers, due to lifestyle-related factors, including dietary habits, we investigated the preventive effects of acidic xylooligosaccharide and related sugars on stress-induced gastric inflammation in mice.

Materials and Methods

Materials and animals

D(+)-Xylose (reagent grade quality) and xylobiose (purity >98%) were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Xylan (from oats and spelt) was purchased from Tokyo Kasei Kogyo Co., Ltd. (Tokyo, Japan). D-Glucuronic acid (purity 97%)
was purchased from Lancaster Synthesis (Morecambe, UK). Acidic xylooligosaccharide from corncobs was supplied by Suntory Ltd. (Osaka, Japan). Acidic xylooligosaccharide consisted of the following components: 43.0% glucuronylglucose, 17.1% glucuronylgluconolactone, 34.0% glucuronylgluconolactone, 28.8% glucuronylgluconolactone, 38.8% glucuronylgluconolactones not less than pentamer, and 12.0% unknown. The oligomer content was 83.7%. Quercetin was purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). Other chemicals used were of reagent grade. Four-week-old male ddY mice were purchased from Japan SLC Inc. (Shizuoka, Japan). Mice were maintained for 3 days in a room at 24±1°C with a 12 hr light-dark cycle and given tap water and commercial laboratory chow (5L37; Japan SLC Inc., Shizuoka, Japan) ad libitum before the experiments. Throughout the experiment, the animals were handled in accordance with “The Guide for the Animal Experiments in Numazu National College of Technology”.

Mouse model of stress-induced gastric inflammation

In this study, cold-restraint stress was used to promote mouse gastritis, because it does not require induction with agents, such as ethanol and hydrochloric acid, thus excluding any direct interaction between the samples and inflammation-inducing agents. The effects of various sugar samples on stress-induced gastric inflammation in mice were examined according to a modification of the method of Chen et al. Briefly, 4-week-old male ddY mice were starved for 24 hr, but given tap water ad libitum. Samples were dissolved in 0.5 mL of 0.5% (w/v) tragacanth gum solution and administered orally to mice with a gastric sonde at doses of 50, 100, or 200 mg/kg body weight. Mice were immobilized in stress cages and left at 4°C for 90 min under close observation. After stress-loading, the mice were immediately killed under anesthesia with diethyl ether and the stomach was removed. The stomachs were incised in line with the greater curvature and the contents were washed out with chilled saline. The number of bleeding points of 0.5 mm or more in the inner mucosa of the mouse stomach was counted by visual observation. A control experiment was performed with 0.5% (w/v) tragacanth gum solution alone. Hydrocortisone, a well-known steroid-type anti-inflammatory agent, was administered orally to mice as a positive control at the same doses as the samples. The number of mice in each group was 4.

Antioxidant activities of acidic xylooligosaccharide

Antioxidant activities of acidic xylooligosaccharide were evaluated by monitoring superoxide anion radical (O$_2^-$)-scavenging activity. Briefly, 0.5 mL of 15μM phenazine methosulfate, 0.5 mL of 200 μM nitro blue tetrazolium, 0.5 mL of sample solution, and 0.5 mL of 750 μM nicotinamide adenine dinucleotide, a starter for the production of O$_2^-$, were added to 0.5 mL of 20 mM phosphate buffer (pH 7.4). The mixture was incubated at 25°C. Formation of nitro blue tetrazoliumdif-ormazan was followed spectrophotometrically at 560 nm. The increase in absorption rate of the reaction mixture with samples was compared with that of the mixture without samples, and the inhibition ratio was calculated. The O$_2^-$-scavenging activity of the samples was expressed as the inhibition ratio for the reaction mediated by this radical. The concentrations of the samples used were 3.3–4.3 mg/mL. A natural antioxidant, quercetin, was used at concentrations of 0.78–1.4 mg/mL as a control.

Statistics

Statistical analyses were performed with the non-parametric Mann-Whitney U-test to determine the significance of differences between groups, and p<0.05 was considered statistically significant.

Results and Discussion

Inhibitory effects of acidic xylooligosaccharide on stress-induced gastric inflammation in mice

The inhibitory effects of acidic xylooligosaccharide on mouse gastric inflammation are shown in Fig. 1. Oral administration of acidic xylooligosaccharide and hydrocortisone at doses of 100 and 200 mg/kg body weight significantly reduced the number of bleeding points in the gastric mucosa of mice loaded with cold-restraint stress. Hydrocortisone also showed significant suppressive activity on mouse gastric inflammation at a dose of 50 mg/kg body weight.

As indicated by arrows in Fig. 2, many bleeding points were observed in the gastric mucosa of mice loaded with cold-restraint stress, while no bleeding points were observed in normal healthy mice. Oral administration of acidic xylooligosaccharide at a dose of 100 mg/kg body weight reduced the number of bleeding points in the gastric mucosa.

![Fig. 1. Inhibitory effects of oral administration of acidic xylooligosaccharide on mouse gastritis induced by cold-restraint stress](image-url)
Antioxidant activities of acidic xylooligosaccharide

Hydrochloric acid and digestive enzymes, such as pepsin, in gastric juice are thought to be direct causative factors of gastritis. Injury to the cells of the inner mucosa in the stomach may stimulate the production of active oxygen species, such as nitrogen monoxide and superoxide anion radicals, by macrophages and neutrophils permeating into them. Active oxygen species could injure the surrounding cells and extracellular matrix, and produce lipid peroxides and metabolites of arachidonic acid. The inflammation would be promoted through these processes. It was reported that the levels of lipid peroxides were elevated in rats exposed to water-immersion restraint stress. Chitoxylooligosaccharide and agarooligosaccharide are known to exhibit antioxidant activities. The O$_2^-$-scavenging activities of acidic xylooligosaccharide are shown in Fig. 3 (values are means±SEM ($n=3$)).

Acidic xylooligosaccharide showed concentration-dependent O$_2^-$-scavenging activity at concentrations of 3.3–4.3 mg/mL and its IC$_{50}$ was 3.5 mg/mL, although the IC$_{50}$ of quercetin, a common flavonoid in constituents of ordinary meals, was 0.61 mg/mL. The concentrations of the solutions of acidic xylooligosaccharide administered to mice at doses of 50, 100, and 200 mg/kg body weight were approximately 2, 4, and 8 mg/mL, respectively. Therefore, the O$_2^-$-scavenging activity of acidic xylooligosaccharide could contribute, in part, to its suppressive activity on stress-induced mouse gastritis. Acidic xylooligosaccharide may also be expected to show a protective effect against gastric juice simply by coating the surface of the mouse gastric mucosa.

Inhibitory effects of some sugars related to acidic xylooligosaccharide on stress-induced gastric inflammation in mice

The inhibitory effects of some sugars related to acidic xylooligosaccharide on mouse gastritis are shown in Fig. 4. Monomer xylose, dimer xylobiose, and polymer xylan showed no significant suppressive activity on mouse gastric inflammation at the dose of 100 mg/kg body weight. Glucuronic acid, the acidic component of acidic xylooligosaccharide, also showed no significant activity at the same dose. Therefore, the active components in acidic xylooligosaccharide are thought to be larger than trimers of xylose. Acidic xylooligosaccharide used in this study included 66.6% of such oligomers. Glucuronic acid may not be necessary for the anti-inflammatory activity of acidic xylooligosaccharide. We could obtain only crude xylooligosaccharide, and this showed significant suppressive activity on mouse gastric inflammation at the dose of 100 mg/kg body weight (data not shown). However, its purity was low (43.3%), and further studies are required using a preparation with higher purity. In addition, the mechanism of the suppressive activity of acidic xylooligosaccharides on mouse stress-induced
gastritis should be further investigated. Recently, acidic xylooligosaccharide from birchwood xylan was reported to show antimicrobial activity against *Helicobacter pylori*\(^7\). The daily intake of acidic xylooligosaccharide larger than trimers at doses not exceeding 300 mg/kg body weight per day may inhibit stress-induced gastric inflammation in humans, although excessive intake of digestion-resistant oligosaccharides, such as acidic xylooligosaccharide, can cause diarrhea.

References