ノート

天然保存料カワラヨモギ抽出物の抗菌活性成分

（平成19年3月30日受理）

杉本直樹 多田敦子 山崎壮 棟元憲一

Antimicrobial Activity and Constituents in Rumput Roman Extract as a
Natural Food Preservative

Naoki Sugimoto*, Atsuko Tada, Takashi Yamazaki and Kenichi Tanamoto
National Institute of Health Sciences; 1–18–1 Kamiyoga, Setagaya-ku, Tokyo
158–8501, Japan; *Corresponding author

Rumput roman extract is used as a natural food preservative. Its antimicrobial activity and constituents were investigated as part of an ongoing study to evaluate its quality and safety as a food additive. The constituents were analyzed by GC/MS, and 5 major constituents were isolated and identified as capillin, capillene, caryophyllene oxide, α-curcumene and methyleugenol using NMR analysis. The antimicrobial activities against E. coli, S. cerevisiae and A. niger were measured by means of the halo test. Based on the results, we confirmed that capillin was the major active constituent. The concentrations of capillin and capillene were determined to 17.9 mg/mL and 36.1 mg/mL, respectively, from standard curves of authentic compounds on HPLC.

(Received March 30, 2007)

Key words: カワラヨモギ Artemisia capillaris Thunb.; カワラヨモギ抽出物 rumput roman extract; 天然保存料 natural food preservative; カピリン capillin; カピレーン capillene

緒 言

キク科 (Compositae) のカワラヨモギ (Artemisia capillaris) の花蕾または全草を乾燥したものは、インチヨウ (防腐薬) と呼ばれ、古くから漢薬として中国や日本で広く利用されており、消炎、解熱、利尿および利尿を期待して黄疸や肝炎などに用いられている。一方、わが国において、その抽出物は、カワラヨモギ抽出物と呼ばれ、食品の保存目的とした天然由来の食品添加物としてその使用が許可されている。既存添加物名簿*1 には、本抽出物は、「カワラヨモギの全草から得られた、カピリン (capillin) を主成分とするものをいう」と定義されており、既存添加物名簿収載品目リスト**注解書には、カワラヨモギ抽出物の基準・製法・本質として、「カワラヨモギ (Artemisia capillaris Thunb.) 等の全草より、室温時エタノールもしくは含水エタノールで抽出して得られたもの。または水蒸気蒸留して得られたものである。有効成分は、カピリン (capillin) 等である」と記載されている。カワラヨモギ抽出物の抗菌活性の本体がカピリン (capillin) であることが報告されており、これに従えば、既存添加物名簿に記載のカワラヨモギ抽出物の定義に問題はないと考えられる。しかし、食品添加物として市場に流通するカワラヨモギ抽出物の成分組成に関する報告はこれまでになく、また、国の成分規格は定めされていない。我々は、既存添加物のうち、国の規格や業界の自主規格のある品目、あるいは規格として不十分と考えられる品目を選定し、成分および品質に関する研究を行うと同時に新規分析法について検討している。そこで、その一環として、カワラヨモギ抽出物の定義の妥当性を確認する目的で、本抽出物製品の成分分析および有効性の確認を行った。

試料および方法

1. 試料および実験材料

天然保存料カワラヨモギ抽出物（英名: Rumput roman extract）を1社の製品（エタノール製剤）は、日本食品添加物協会を通じて入手したものを用いた。供試菌株は、細菌として Escherichia coli ATCC 8739、酵母として Saccharomyces cerevisiae NBRC 1952、カビとして Aspergillus niger TSY 0517 を用い、前培養した新鮮菌を 0.75% 食塩水中に 10^6 CFU/mL になるように調製したものを供試菌液とした。なお、A. niger については、
HPLC system (LC-10Aump).
核磁気共鳴装置 (NMR): JEOL ECA500 (日本電子 (株)製). ケミカルシフト値は、TMS (tetramethylsilane) を内部標準とし、δ 値を ppm 単位で表した。

3. 主構成成分の単離・構造決定
カラヨモギ抽出物製品から溶剤を減圧留去して得た残

Fig. 1. Fractionation of rumputs roman extract

Table 1. NMR and MS data of compounds 1, 2, 3, 4 and 5

<table>
<thead>
<tr>
<th>Compound</th>
<th>NMR (CDCl₃) δ</th>
<th>MS m/z:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>¹H</td>
<td>¹³C</td>
</tr>
<tr>
<td>Capillene (1)</td>
<td>1.92 (H, s, H-6), 3.66 (H, s, H-1), 7.24 (1H, d, J=7.3, 1.5 Hz, H-6'), 7.31 (3H, d, J=7.3 Hz, H-2', 4', 6')</td>
<td>4.2 (C-6), 25.5 (C-1), 64.4 (C-3), 67.5 (C-4), 73.8 (C-2), 74.1 (C-5), 126.8 (C-4'), 137.9 (C-3', 5'), 128.6 (C-2', 6'), 138.7 (C-1')</td>
</tr>
<tr>
<td></td>
<td>1.14 (H, s, H-1), 2.65 (1H, m, H-1'), 2.13 (1H, m, H-2'), 1.94 (1H, m, H-3), 1.71 (1H, m, H-4'), 0.95 (1H, m, H-5'), 0.96 (1H, m, H-6')</td>
<td>4.8 (C-6), 63.4 (C-4), 70.9 (C-2), 78.4 (C-3), 86.3 (C-5), 126.8 (C-3', 5'), 129.6 (C-2', 6'), 134.3 (C-4'), 136.7 (C-1'), 177.1 (C-1)</td>
</tr>
<tr>
<td></td>
<td>1.58 (H, s, H-1'), 2.31 (3H, s, 4-Me), 2.85 (2H, d, J=7.3, 1.5 Hz, H-6'), 8.12 (2H, d, J=7.3 Hz, H-2', 6')</td>
<td>16.9 (C-13), 21.6 (C-15), 27.2 (C-7)</td>
</tr>
<tr>
<td></td>
<td>1.18 (H, s, H-1'), 2.98 (2H, d, J=7.3, 1.5 Hz, H-6'), 8.12 (2H, d, J=7.3 Hz, H-2', 6')</td>
<td>29.8 (C-3), 29.9 (C-14), 30.2 (C-2), 34.0 (C-11), 39.1 (C-8), 39.7 (C-10), 48.7 (C-5), 50.7 (C-6), 59.8 (C-9), 63.7 (C-1), 112.7 (C-12), 151.8 (C-4)</td>
</tr>
</tbody>
</table>
さ約2gをシリカゲルカラムクロマトグラフィー（ヘキサン：酢酸エチル=30:1およびアセトン）に付し、Fr. I (195 mg), II ((化合物1) 535 mg), III (222 mg), IV (466 mg), V (177 mg), VI (447 mg) の6つに分画した。
Fr. Iをシリカゲルカラムクロマトグラフィー（ヘキサン：酢酸エチル=75:1）に付し，化合物2 (22 mg)を得た。Fr. IVおよびFr. Vをそれぞれシリカゲルカラムクロマトグラフィー（ヘキサン：酢酸エチル=30:1）に付し，化合物3 (172 mg), 化合物4 (15 mg), 化合物5 (35 mg)を得た (Fig. 1)。単離同定した化合物のスペクトルデータをTable 1に示した。

4. GC/MS分析

カワラヨモギ抽出物製品および各フラクションを下記の条件でGC/MSに付した。

GC/MS測定条件：カラム、CBP-1 (0.25 mm i.d.×25 m) ((株)島津製作所製)；カラム入口圧, 100 kPa；キャリヤーガス流量, He 1.9 mL/min；注入口温度, 230℃；カラム温度, 70℃ (4 min)→5℃/min→230℃ (10 min)；イオン源温度, 230℃；イオン化エネルギー, 70 eV；注入量, 1.0 µL；試料注入方式, スプリット (1:8)；測定モード, EIおよびCIスキャン法 (m/z 65~700)；CIガス, イソプロタン。

5. Capillin (3) および capillene (1) の定量

カワラヨモギ抽出物製品より精製した主要成分capillin (3)およびcapillene (1)をそれぞれアセトントリリに溶解し，濃度1.0, 0.5, 0.25 mg/mLに調整し，下記の条件のHPLCに付し，各ピーク面積より検量線 (R^2 > 0.98) を作成した。カワラヨモギ抽出物製品をエタノールで50倍希釈し，同条件のHPLCに付し，製品中のcapillin (3)およびcapillene (1)の含量を求めた。

HPLC条件：カラム, J' sphere ODS-H80 (4.6 mm i.d.×250 mm, ワイエムシ社製)；カラム温度, 40℃；移

Fig. 2. TIC profiles of rumput roman extract and fractions I–VI by GC/MS analysis.
動相、60％アセトニトリル；注入量、5μL；検出波長、UV 210 nm。

6. 抗菌活性の測定
既報30)の方法、ハロー試験法（ペーパーディスク法）30) を用いた。すなわち、寒天平板培地として、プラスチックシャーレ（直径9 cm）に121℃、20分間高圧蒸気滅菌した標準寒天培地（日水製薬）、E. coli（E.coli用）およびポテトデキストロース寒天培地（日水製薬）、S. cerevisiae、A. niger用）の培地を25mLに分注し、固化後、各供試液100μLを培地にそれぞれ接種し、コンラージ棒で均一に塗抹した。試料濃度100μg/mLの試料溶液20μLを直徑8mmの抗菌試験管用厚手ペーパーディスク（ADVANTEC社製）に浸み込ませ、風乾後、培地上に置き、36℃で48時間培養後の発育阻止円を観察した。なお、試料溶液の調製には、溶解性を考慮してメタノールジメチルスルホキシド水=4:4:1を用いた30)。

結果および考察
1. カワラヨモギ抽出物の主構成成分
カワラヨモギ抽出物の主構成成分を確認するため、本製品をGC/MSに付したところ、25のピークa～yが検出された（Fig. 2）。主な成分と考えられる比較的大きなピークe、i、k、p、tについては、Fig. 1に示すようにシリカルガルカラムクロマトグラフィに付し精製し、化合物1（ピークp）、2（ピークe）、3（ピークt）、4（ピークi）、5（ピークk）を得た。各種2次元NMR（DQF-COSY、HMBC、HMBPS）スペクトルを測定し、化学構造を確認した結果、化合物1がcapillene、化合物2がα-circumene31)、化合物3がcaryophyllene oxide、化合物4がcaryophyllene oxide32)、化合物5がmethyleugenolであり、すべて既知化合物であった。観察されたMSデータおよび帰属したNMRデータはTable 1に示した。また、他の化合物の同定は、Cl-MSおよび分子量を推定後、EI-MSによると各ピークのMSフラグメントをNISTライブラリ検索し、ラブライリに未登録のものについては既知の報告15)-16)との比較により行った。今回、カワラヨモギ抽出物製品より検出された化合物をTable 2に示した。なお、カワラヨモギの特徴的な成分として、capillene（3）およびcapillene（1）のほかにcapillene、scopalone、capillarin、capillarinなどが報告16)-17)されているが、これらはGC/MS分析によりカワラヨモギ抽出物製品からは検出されなかった。

2. カワラヨモギ抽出物の抗菌効果
細菌としてE. coli、酵母としてS. cerevisiae、カビとしてA. nigerを用い、ハロー試験法により、カワラヨモギ抽出物製品の抗菌効果を確認した。カワラヨモギ抽出物製品は、E. coliに対して活性を示さなかったが、S. cerevisiaeおよびA. nigerでは共に7mmの発育阻止円を示した。次に、Fig. 1に示すように分画したフラクションでは、Fr. Iを除くFr. II～Fr. VIおよびS. cerevisiaeおよびA. nigerに対する抗菌活性を観察した（Table 3）。特に、Fr. IVはS. cerevisiaeおよびA. nigerに対して大きな発育阻止円（>30 mm）を認められ、E. coliに対しても小さな発育阻止円（3 mm）が観察された。したがって、カワラヨモギ抽出物製品の主要な抗菌活性成分がFr. IVに濃縮されたと考えられ、各フラクションのGC/MS分析の結果、Fr. IVの主成分として、capillene（1）（ピークp）およびcapillene（3）（ピークt）が認められた。両者のいずれかが抗菌活性の活性本体と考えられたが、capillene（1）（ピークp）のみが構成されるFr. IIおよびFr. IIIがFr. IVよりも弱い活性しか示さなかったことから、Fr. IVに含まれるcapillene（3）が抗菌活性本体であると結論した。本結果は、カワラヨモギの精油中のcapillene（3）が抗菌成分の本体であるという今井の報告30)と矛盾しないものであった。
一方、S. cerevisiaeおよびA. nigerに対して7mmおよび4mmの発育阻止円を示したFr. Vは、主にcaryophyllene oxide（4）（ピークi）およびmethyleugenol（5）（ピークk）より構成されており、A. nigerに対して10mmの発育阻止円を示したFr. VIは、capillene（1）

Table 2. Chemical constituents of rumput roman extract

<table>
<thead>
<tr>
<th>Peak</th>
<th>Compound</th>
<th>Peak</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>caryophyllene</td>
<td>n</td>
<td>unknown</td>
</tr>
<tr>
<td>b</td>
<td>unknown</td>
<td>o</td>
<td>isoeugenol</td>
</tr>
<tr>
<td>c</td>
<td>acetophenone</td>
<td>p</td>
<td>capillene(1)<sup>31</sup></td>
</tr>
<tr>
<td>d</td>
<td>2 or 3-methylbutanoic acid</td>
<td>q</td>
<td>caryophyllene derivative</td>
</tr>
<tr>
<td>e</td>
<td>α-curcumene(2)<sup>31</sup></td>
<td>r</td>
<td>caryophyllene derivative</td>
</tr>
<tr>
<td>f</td>
<td>anethole</td>
<td>s</td>
<td>caryophyllene derivative</td>
</tr>
<tr>
<td>g</td>
<td>unknown</td>
<td>t</td>
<td>capillen(3)<sup>31</sup></td>
</tr>
<tr>
<td>h</td>
<td>caryophyllene oxide(4)<sup>31</sup></td>
<td>u</td>
<td>O-methoxycapillene</td>
</tr>
<tr>
<td>i</td>
<td>norcapillene</td>
<td>v</td>
<td>capillarin C</td>
</tr>
<tr>
<td>j</td>
<td>methylcyclopentenone</td>
<td>w</td>
<td>unknown</td>
</tr>
<tr>
<td>k</td>
<td>methyleugenol(5)<sup>31</sup></td>
<td>x</td>
<td>capillarin B</td>
</tr>
<tr>
<td>l</td>
<td>neralide</td>
<td>y</td>
<td>bis(2-ethylhexyl)phthalate</td>
</tr>
<tr>
<td>m</td>
<td>spathulenol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a See Fig. 2. ³¹ The structures were confirmed by means of NMR analysis after isolation.
したがって，製品毎に組成比および抗悪性が変動することが予想され，カワラヨモギ抽出物については，主抗悪性成分のcapillin (3) の含量設定を設定することが少なくとも必要であると思われた。

ま と め
天然保存料であるカワラヨモギ抽出物の市販製品については，E. coli, S. cerevisiae および A. niger に対する抗悪性を確認した。GC/MS分析により，さらに主要成分について単離構造決定した結果，有効成分の体がcapillinであることを確認した。また，HPLCにより，本抽出物中のcapillinおよびcapilleneの定量を行った結果，今回分析した製品中にはそれぞれ17.9 mg/mL，36.1 mg/mL含有されることを明らかとした。本研究結果は，カワラヨモギ抽出物の品質評価および規格設定のための基礎データとなると考えられる。

謝 辞
天然保存料カワラヨモギ抽出物製品の収集にご協力いただいた（財）日本食品添加物協会に深謝いたします。

文 献
1) 日本食品添加物協会 “既存添加物名簿収載品目リスト注解書”1999。

