Study on Processed Senna Found in Health Teas

Mitsuko Takahashi1,*, Maki Miyazawa2, Katsumi Sakurai3, Kenjiro Watabe4 and Takashi Kojima5

1Yokohama City Institute of Health: 1–2–17 Takigashira, Isogo-ku, Yokohama 235–0012, Japan; 2Kanagawa Prefecture Institute of Public Health: 1–3–1 Shimomachiya, Chigasaki, Kanagawa 253–0087, Japan; *Corresponding author

Sennoside A and B were detected in 21 commercial health tea products surveyed in 2000–2007, but there were 8 products in which the leaves could not be identified as senna because the leaves had become discolored. The results of assay of sennoside levels and TLC chromatograms suggested that processed senna had been used in these products. Next, with reference to tea and health tea manufacturing methods, pharmaceutical senna was roasted or wet-processed experimentally. The results indicated that the discolored leaves contained in commercial health tea were most likely derived from senna leaves. Moreover, sennosides in medicinal doses were detected in some processed senna samples, and were determined to have a cathartic action in mice. Based on morphological confirmation and the results of component analysis, including sennoside, the discolored leaves found in commercial health teas were therefore determined to be senna leaves. There may be possible health risks, including diarrhea.

(Received December 1, 2008)

Key words: senna; senna leaf; processed senna; health tea; health food; sennoside A, B; high-speed liquid chromatography; HPLC; catharsis effect

Sennoside A, B are processed in 21 commercial health tea products surveyed in 2000–2007, but there were 8 products in which the leaves could not be identified as senna because the leaves had become discolored. The results of assay of sennoside levels and TLC chromatograms suggested that processed senna had been used in these products. Next, with reference to tea and health tea manufacturing methods, pharmaceutical senna was roasted or wet-processed experimentally. The results indicated that the discolored leaves contained in commercial health tea were most likely derived from senna leaves. Moreover, sennosides in medicinal doses were detected in some processed senna samples, and were determined to have a cathartic action in mice. Based on morphological confirmation and the results of component analysis, including sennoside, the discolored leaves found in commercial health teas were therefore determined to be senna leaves. There may be possible health risks, including diarrhea.

(Received December 1, 2008)

Key words: senna; senna leaf; processed senna; health tea; health food; sennoside A, B; high-speed liquid chromatography; HPLC; catharsis effect
実験方法

1. 材料

調査に用いた市販の健康茶のうち、センノシド A, B を検出した 21 製品についての詳細を Table 1 に示した。

2. 試薬および試料

センノシド A および B 標準品は、(財) 日本公定書協会の局方標準品センノシド A およびセンノシド B を用いた。酵母、アセトニトリルおよびメタノールは、関東化学(株)製 HPLC 用を使用した。その他、試薬および溶媒などは市販特級品を用いた。

局方センナは山本漢方製薬(株)製を使用した。

3. 試薬の調製

加工センナは、茶や健康食品製造者の情報など(2)を参考に、以下に示した方法でセンナに塩化あるいは加熱などの加工を施した。

(1) 焙煎センナの作製(2)(3)

局方センナ 20 g を家庭用ホットプレート（大きさ約 30 cm×40 cm）を用いて 180～190°C でかき混ぜながら加熱した。5 分間加熱したものを浅煎りセンナ、15 分間加熱したものを中煎りセンナ、30 分間加熱したものを深煎りセンナとし、各試料に供した。なお、以下ではこの加熱したセンナを焙煎センナと称した。

(2) 加温センナの作製(4)(5)

葉に十分な水分を含ませるため、局方センナ 1 g に対して 2.5 mL の精製水を加えて湿らせた。冬季および秋季の温度も考慮し、湿らせたセンナを恒温槽で 5°C、20°C および 40°C の各温度で 6 時間および 20 時間静置させ、その後、家庭用ホットプレートを用いて 80°C で約 2 時間乾燥させた。

あらかじめ 80°C で乾燥過程でのセンノシド A, B 量減少の有無を確認した。この加湿後、乾燥をしたセンナを加温センナと称した。

なお、焙煎センナ、加温センナおよび市販品の葉の色は、JIS（日本工業規格）Z8102：2001 色名表に基づいて命名した。

4. センノシド A, B の確認および定量

TLC によるセンノシド A, B の確認は、局方(2)の「センナ」確認試験 (2) に準じて行った。TLC 板は Merck 社製
HPTLC Silica gel 60F254 (100 × 100 mm) を用いた。
また、試料溶液の調製および HPLC によるセノンド砕 A、B の定量は小島らの方法② に準じて行った。なお、セノンド砕 A、B 量の合計をセノンド砕総量とした。

5. マウスを用いた灌流試験
灌流試験用試験溶液および試験方法は、宮澤らの報告に準じて行った。灌流試験の陽性対照は局方センナ、陰性対照は精製水を使用し、絶食させた雄性 ddY マウス（10～14 頭、体重 38.1～44.4 g）を 3 匹 1 群として行った。

結果および考察
1. 市販の健康茶についての実態調査
市販の健康茶 109 種類について調査を行った結果、Table 2 に示したとおり 21 種類にセノンド砕 A1B を検出した。うち 18 種類の葉を検出した製品は No.1～9 の 9 種製品であった。
検体 No.1 ～4 は、いずれもセノンド砕総量 10 mg/包以上を含有していた。No.3 は 19.2 mg/包含有し、局方センナ約 2 g に相当する量だった。このような製品を服用することにより下痢などの健康被害を生じる可能性があると考えられる。
No.5 は、センナ葉のほかにセンナの色よりも緑が退色した「くすんだ緑みの黄（dd-y）」色の葉も含んでいた（Fig.1，A）。製品には 9.0 mg/包のセノンド砕を含有し、HPLC クロマトグラム（Fig.2，B）および TLC（Fig.3，D）が局方センナと類似していた。
No.6～9 はセンナの葉を確認したもの、Fig.1(B) に類似し、葉の裏側に毛を有した黒色の葉が見られた。これらには 1.9～8.2 mg/包のセノンド砕を含有していた。
No.10～17 は葉の裏側に毛を有した「くすんだ暗緑（dd-yg）～黒（yg-Bk）」色の葉を検出した（Fig.1, B）。セノンド砕総量は 1.4～7.6 mg/包と製品により異なっていた。黒色の葉について、TLC によるセノンド砕 A、B の確認を行った結果、局方センナのクロマトグラムと類似していた（Fig.3, E）。
No.18～21 はセンナ葉が検出され、セノンド砕総量が 0.4～4.8 mg/包であった。これは、センナ葉にセノンド砕含有する報告③ と一致するものであった。
以上の調査の結果、変色していたためにセンナと断定できなかったものが 8 種製品あった。しかし、これらの外観形態、セノンド砕総量および TLC の結果から、センナが加工された製品中に使用されていること、あるいは原料の保存状況などによる変色が考えられた。製品中には含有していた変色センナには白別すると黒色のものと、センナの緑色が退色したものも見られた。これらの色の変化はセンナを加工することにより起因すると考えられる。茶の加工によりよく見られる焙煎および加湿の処理を施し、市販健康茶との比較検討を行った。

2. 焙煎センナの特徴および市販健康茶との比較
焙煎時間によるセンナの色の変化を Fig.1 に示した。

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Contents of sennoside (mg/g)*1</th>
<th>Detected part of senna</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.1</td>
<td>17.1</td>
</tr>
<tr>
<td>2</td>
<td>5.2</td>
<td>14.0</td>
</tr>
<tr>
<td>3</td>
<td>6.9</td>
<td>19.2</td>
</tr>
<tr>
<td>4</td>
<td>4.9</td>
<td>12.5</td>
</tr>
<tr>
<td>5</td>
<td>4.3</td>
<td>9.0</td>
</tr>
<tr>
<td>6</td>
<td>1.7</td>
<td>5.3</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>1.9</td>
</tr>
<tr>
<td>8</td>
<td>1.5</td>
<td>3.8</td>
</tr>
<tr>
<td>9</td>
<td>2.4</td>
<td>8.2</td>
</tr>
<tr>
<td>10</td>
<td>2.3</td>
<td>7.6</td>
</tr>
<tr>
<td>11</td>
<td>2.1</td>
<td>5.7</td>
</tr>
<tr>
<td>12</td>
<td>0.5</td>
<td>1.4</td>
</tr>
<tr>
<td>13</td>
<td>2.0</td>
<td>7.2</td>
</tr>
<tr>
<td>14</td>
<td>1.0</td>
<td>3.1</td>
</tr>
<tr>
<td>15</td>
<td>1.9</td>
<td>4.7</td>
</tr>
<tr>
<td>16</td>
<td>1.5</td>
<td>2.3</td>
</tr>
<tr>
<td>17</td>
<td>1.0</td>
<td>2.6</td>
</tr>
<tr>
<td>18</td>
<td>2.0</td>
<td>4.8</td>
</tr>
<tr>
<td>19</td>
<td>1.7</td>
<td>4.1</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>21</td>
<td>0.9</td>
<td>2.2</td>
</tr>
</tbody>
</table>

*1 The quantification of sennosides and clean-up of sample solutions were performed according to Kojima et al.⑤

Table 3. Sennoside contents in processed senna

<table>
<thead>
<tr>
<th>Materials</th>
<th>Processing condition</th>
<th>Contents of sennoside (mg/g)*1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SA</td>
<td>SB</td>
</tr>
<tr>
<td>Positive control</td>
<td>(JP senna)</td>
<td>4.2</td>
</tr>
<tr>
<td>Roasted senna</td>
<td>Light</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Midium</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Dark</td>
<td>0.1</td>
</tr>
<tr>
<td>Wet senna</td>
<td>40°C for 6 hr</td>
<td>N.D.*2</td>
</tr>
<tr>
<td></td>
<td>40°C for 20 hr</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>20°C for 6 hr</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>20°C for 20 hr</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>5°C for 6 hr</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>5°C for 20 hr</td>
<td>2.6</td>
</tr>
</tbody>
</table>

*1 The quantification of sennosides and full-up of sample solutions were performed according to Kojima et al.⑤

*2 N.D.<0.001 mg/g
SA: Sennoside A  SB: Sennoside B
Fig. 1. Changes in color of senna leaves with different processing

Changes in color of senna leaves with different processing.

Roasted senna was heated on a hot plate at 180-190°C. Wet senna was treated with 2.5 mL of distilled per the every 1 g of senna. Next, it was kept at 5°C, 20°C or 40°C for 6 hours or 20 hours. After the treatment, the leaves were dried on a hot plate at 80°C. The color of the leaves was described according to JIS (Japanese Industrial Standards) Z8102:2001 “Names of non-luminous object colours.”

The hairs of the abaxial leaves were not influenced by processing.

A Commercial health tea (Sample No. 5) Leaves color: dg-YG
B Commercial health tea (Sample No. 10) Leaves color: vd-YG
C Wet senna Leaves color: vd-YG
D Light-roasted senna Leaves color: dl-YG
E Dark-roasted senna Leaves color: vd-rY
F JP senna (control) Leaves color: dl-YG
G Leaves color: vd-rY
H Leaves color: dg-rY
I leaves color: vL-Bk
J leaves color: yd-Bk
K leaves color: yd-Bk
L leaves color: yd-Bk
M leaves color: yd-Bk

また、市販品のNo. 5に含まれていた葉は、浅煎りセンナの色および形態が一致し、センノシド量およびHPLCクロマトグラムの結果からも浅煎りセンナに類似していると考えられた。

3. 加湿センナの特徴および市販健康茶との比較

一般的な発酵茶の製造では、80°Cで茶葉を乾燥してい
ることから SEM, センナ葉を発酵茶の様に加湿後、乾燥す
る際の温度条件を80°Cにしてセンノシド総量の影響を検
討した。その結果、加湿センナのセンノシド総量を
100%とすると、5分乾燥で101±1.0%（n=3）、30分で
105±2.9%（n=3）、2時間で105±6.2%（n=3）となり、
80°Cの乾燥ではセンノシド量の減少は見られなかった。
また、センナ葉の色も乾燥により変化しないことが確認さ
れた。

加湿センナの実体顕微鏡による形態観察結果をFig. 1
(C)に示し、加湿センナの葉はいずれの処理条件でも
「ごく暗い緑（vd-YG）～黒（yg-Bk）」に変色した。発酵セ
ンナと同様に葉の裏側の毛は加湿処理による影響を受けな
いことが確認された。加湿センナのHPLCクロマトグラ
Fig. 2. HPLC chromatograms of commercial samples and processed senna
A JP senna  B Commercial health tea (Sample No. 5)  C Commercial health tea (Sample No. 10)  D Light-roasted senna  E Medium-roasted senna  F Dark-roasted senna  G Wet senna (5°C for hours)  H Wet senna (20°C for 20 hours)  I Wet senna (40°C for 20 hours)
SA: Sennoside A  SB: Sennoside B
Fig. 3. TLC chromatograms of commercial samples and processed senna
A Sennoside A  B Sennoside B  C JP senna  D Commercial health tea (Sample No. 5)  E Commercial health tea (Sample No. 10)  F Light-roasted senna  G Medium-roasted senna  H Dark-roasted senna  I Wet senna (20°C and 5°C for 6 hours)  J Wet senna (40°C for 20 hours)

Fig. 4. The results of catharsis test with processed senna
Catharsis test was performed on 3 male mice/1 group according to Miyazawa et al.8)
High dose: 2 g/20 mL/kg, Low dose: 1 g/20 mL/kg ( ): Total contents of sennoside A and B
N.D.: < 0.01 mg/g

40°C 20時間処理(I)ではセノシンA, Bが消失していた。5°C 6時間(G)および20°C 20時間(H)の処理では、ピークの相対的な高さに変化が見られるものの、商販センナ(A)と同様にセノシンA, Bのピークを確認し、その他のピークも類似していた。

各処理条件における加湿センナ中のセノシン総量をTable 3に示した。40°Cで処理させたセンナ中のセノシンは、加湿時間に関係なくすべて消失した。一方20°Cで6時間および20時間処理では、セノシン総量がおのおの6.9 mg/gおよび5.3 mg/gであった。また、5°Cで6時間および20時間処理では、おのおの7.7 mg/gおよび7.0 mg/gだった。これらの結果、セノシン総量は加湿時間により温度による影響を強く受けることが明らかとなった。セノシン量の変化には、葉に含まれる分解酵素による影響が考えられる。葉やオリーブ葉を発酵茶にした場合、葉に含まれる酵素が成分を変化させると報告されている10,11)。また、一般的に酵素は45°C付近まで温度上昇に伴って反応速度が増加することが知られている12)。今回の結果では40°Cにおいて分解酵素の反応速度が高まり、センナ葉のセノシンが分解される可能性が考えられる。

市販品No.10〜17に含まれていた黒く変色した葉は、加湿センナの葉の色と一致し、HPLCクロマトグラム(Fig. 2, C)も加湿センナ(G, H)と保持時間や溶出順序などがほぼ一致した。また、セノシン含有状況およびTLCクロマトグラム(Fig. 3, EおよびI)の比較から、20°Cあるいは5°Cの条件での加湿センナに酷似していることが明らかとなった。
今回の比較検討の結果、市販の健康茶には焙煎センナよりも加湿センナの葉を含む製品のほうが多く見られた。

4. 加工センナの減下作用

加工センナの減下作用を把握するため、マウスを用いて減下試験を行った。センノシドが残存していた浅煎りセンナおよび20℃6時間における加湿センナの総量はFig. 4 に示したとおり、それぞれ25.2 mg/gおよび23.5 mg/gで、陰性对照群の約6〜7倍に増加していた。この結果は加湿センナ投与群の異常5.8 mg/gに近い値であり、また、投与量の影響がある影響作用も明かであった。下痢は試料投与1.5時間後から見られ、加湿センナ投与群と同様の傾向にあった。一方、センノシドが含有されていない40℃加温センナ投与群の異常は6.7 mg/gで、陰性对照群との差異は認められなかった。

これより、加工センナでは異常および減下開始時間などが局方センナに類似しており、また、その減下作用は加工センナ中に残存するセンノシドに影響されることが確認された。

ま と め

今回効果事例により、センナが変色しているため、製品内容物の鑑別ができないセンナ葉を断定できなかったことは、著者らが実験的に作製した加工センナとの比較によりセンナ葉の由来の可能性が極めて高いことが判明した。市販の健康茶には、焙煎センナよりも加湿センナの葉を含む製品のほうが多く見られた。加工センナではセンノシドを薬用量含むものもあり、実際にマウスによる試験の結果、減下作用を有することが判明した。以上より、市販健康茶には加工されたセンナが使用されている場合があることから、これらの服用による下痢などの健康被害を未然に防ぐために注意喚起することが必要である。

文 献
1) 独立行政法人国民生活センター報告（2005年9月7日）、ダイエットなどをうった「健康食品」一セノア茶を使っ
た茶類を中心に一。
2) Editorial Committee of Commentary of the Japanese Pharmacopoeia, ed. “Commentary of the Japanese Phar-
macopoeia 15th Edition,” Tokyo, Hirokawa Publishing
3) Huruya, K., Cha no Seizouhou (Manufacturing Meth-
ods for Tea). Shoku no Kagaku (Food Science Jour-
4) Yamanishi, T., Cha no Kagaku (Science of Tea). Tokyo,
5) Muramatsu, K., Cha no Kagaku (Science of Tea). Tokyo,
Asakurashoten, 1992, p. 52-67 (ISBN 978-5-
2544-3031-8).
6) Obara, T., Kanmei Shokujirin, Tokyo, Jyusonbo, 1991,
7) Kojima, T., Kishi, M., Setsuda, S., Satake, M. Origin of
sennosides in dietary supplements containing senna
stem. Shokuhin Eiseigaku Zasshi (J. Food Hyg. Soc.
8) Miyazawa, M., Satoh, S., Kojima, T., Kishi, M., Naka-
oka, T. Improved bioassay of senna leaf in health care
(1996).
9) Terauchi, M., Kanamori, H., Shinjyo, M., Kasami, N.
Hiroshima Pref. Technol. Res. Inst. P. H. and Envi-
ronment Center, 2, 15-19 (1994).
286 (1978).
11) Inazu, T., Hujisawa, H. Practical study on manufactur-
ing of fermented tea to utilize olive and tea leaves.
978-4-8079-0019-6).