計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
深層学習を用いた全天球パノラマ画像からの自己位置推定
梅田 将孝伊達 央
著者情報
ジャーナル フリー

2018 年 54 巻 5 号 p. 483-493

詳細
抄録

The goal of our research is to construct intelligence for autonomous robots which navigate through the real world using images from attached cameras. Localization is one of the key elements for autonomous navigation. In this paper, we propose a grid-based localization from a single image using deep learning. By using a grid map, uncertainty of localization can be defined in a natural way, which is useful for fusion with other sensors The network takes spherical panoramic images with position and orientation of the robot as training data. Position and orientation are expressed by multi-dimensional grid. The network behaves as a classifier, where each grid corresponds to indivisual class and its probability represents that of position and orientation. The experimental results support the effectiveness of the proposed method.

著者関連情報
© 2018 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top