一般化インパルス応答を用いた多入力出力非線形系の近似同定

若松 秀俊*・関口 隆**

Approximate Identification of Nonlinear Multi-Input-Output Systems Using General Impulse Response

Hidetoshi WAKAMATSU* and Takashi SEKIGUCHI**

1. はじめに

離散化したポルタラ汎関数を用いて定式化した非線形系の同定に関する研究として、代数方程式を用いた方法がいくつか提案されている1-7。しかし、これらの方法にはテスト入力信号の選択に一定の制限がある。そこでこの制限を解くために、一定サンプル間隔ごとに積分を施した出力値の組合せから係数行列を求める出力値を数値積分法により、一般化インパルス応答を未知数とする連立1次方程式を構築し、その近似値を求めることにより、出力関係のみに注目したシステム同定を簡便に行う方法を述べる5。

2. 1入力1出力非線形系の表示と同定

測定対象の入力を \(x(t) \)、出力を \(z(t) \)、観測時刻を \(\rho \cdot T \) \((\rho = 1, 2, \ldots; \) \(m; \) \(T > 0) \) とし、各サンプル間隔について入力 \(x(t) \) を積分して（1）式を得る。

\[
X_{r} = \int_{(\rho-1)T}^{\rho T} x(t) dt \tag{1}
\]

（1）式を用いると、時刻 \(\rho \cdot T \) における出力を \(Z_{r} \) としたとき、系の入出力関係は（2）式に示す一般化積分型で表現される。

\[
\begin{align*}
Z_{r} &= \sum_{r=1}^{m} \left(\sum_{t_{1}=1}^{\rho} \cdots \sum_{t_{r}=t_{r-1}}^{\rho} h_{r \cdot t_{1} \cdots t_{r}} \right) X_{p+1-t_{1}}X_{p+1-t_{2}} \cdots X_{p+1-t_{r}} \tag{2}
\end{align*}
\]

ここで \(h_{r \cdot t_{1} \cdots t_{r}} \) は測定対象をポルタラ汎関数で表示したときの \(r \) 次のポルタラ核の各積分値を示し、その対称性に関する性質はそのまま推定される（注1）。

（2）式において \(\rho = 1, 2, \ldots, m \) としたときに得られる個々の入出力関係式をまとめると（3）式を得る。

\[
\begin{align*}
Z &= PH \tag{3.1} \\
Z^T &= [Z_1, Z_2, \ldots, Z_n, Z_n] \tag{3.2} \\
H^T &= [h_1; h_2; \cdots; h_m; h_m] \tag{3.3} \\
P &= [P_1; P_2; \cdots; P_m; P_m] \tag{3.4}
\end{align*}
\]

ただし \(P_{r} \cdot T = v_{r,1}T; v_{r,2}T; \cdots; v_{r,n}T \) ここに \(s_{m,r} = m(m+1)(m+2) \cdots (m+r-1)/r! \), \(s_{n} = \sum_{r=1}^{m} s_{m,r} \) すると \(h_{r} \) は、

\[
\begin{align*}
Z_{r} &= [h_{11 \cdots 1}, h_{11 \cdots 2}, \ldots, h_{mm \cdots m}] \\
&= [h_{1}, h_{2}, \ldots, h_{n}] \\
&= \begin{bmatrix} h_{11} & \cdots & h_{1n} \\
\vdots & \ddots & \vdots \\
\end{bmatrix}
\end{align*}
\]

なお \(s_{m,r} \) 次元行列ベクトル, \(P_{r} \cdot T \) は \([X_{p+1-t_{1}}X_{p+1-t_{2}} \cdots X_{p+1-t_{r}}] \) を要素とし、要素の順番が \(1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{r} \leq \rho \leq m \) を満たすように定めた \(s_{m,r} \) 次元ベクトルである（注2）。

プラントの同定においては、一般に係数行列 \(P \) は階数 \(n \) の平方行列なので（3）式より数値行列を用いて、最短解として \(s_{m} \) 個の離散化インパルス応答を（4）式で示すように定めることができる。

\[
H^* = P^T (PPT)^{-1} Z \tag{4}
\]

このとき、他の入力積分値についても同様に \(P \) を求めることに加えて数値を、また対応する出力ベクトル \(Z \) の次元を増すことによって、より良い同定が行える（注5）。

3. 多入力出力非線形系の表示と同定

測定対象の \(k \) 個の入力を \(x_{k}(t), x_{k}(t), \ldots, x_{k}(t) \)、出力を \(z_{k}(k=1, 2, \ldots, v; s=1, 2, \ldots, w) \) とする。 \(k \) 番目の入力 \(x_{k}(t) \) についてサンプル時刻ごとに積分を施し、時刻 \(\rho \cdot T \) において（5）式に示す \(X_{r} \) を得る。同時刻における出力値を \(Z_{r} \) とすれば、対象とする系は一般

\[
\begin{align*}
H &= \begin{bmatrix} D_1 & D_2 & \cdots & D_v \\
D_1 & D_2 & \cdots & D_v \\
\vdots & \vdots & \ddots & \vdots \\
D_1 & D_2 & \cdots & D_v \\
\end{bmatrix} \\
Z &= \begin{bmatrix} x_{k} & \cdots & x_{k} \\
\vdots & \vdots & \ddots & \vdots \\
\end{bmatrix}
\end{align*}
\]

（注1）入力次元をサンプル時刻ごとに離散化した場合にも形式的には（2）式を用いたと同様に表現されるので同様の議論が可能である。

（注2） \(X_{r} \) において \(r \leq 0 \) のときは \(X_{r} = 0 \)。

（注3）最も遅い過去の入力 \(\tau \) が零でなければ、 \(P \) は対角要素がすべて \(X_{k} \) であるような三角行列になるので階数は \(m \) である。

（注4）サンプル個数が \(m \) のとき、 \(H^* \) は \(s_{m} \) 次元ベクトル、 \(Z \) は \(m \) 次元ベクトル、 \(P \) は \(m \times m \) 行列で \(PPT \) は \(m \times m \) 行列であるので逆行列の次元はサンプル個数 \(m \) によって定まる。

（注5）この際、もとの次数行列の次の定義によるような入力次元を選び必要がある。
化インパルス応答の対称性を考慮して、（6）式で表現できる。

\[
X_k = \sum_{r=1}^{p+1} \sum_{i_1=1}^{r} \sum_{i_2=1}^{r-i_1} \ldots \sum_{i_q=1}^{r-i_{q-1}} x_{i_1} x_{i_2} \ldots x_{i_q} \tag{5}
\]

（6）式において、\(p = 1, 2, \ldots, m \) としたときに得られる個々の入力出力関係式をまとめると、（7）式のように表現できる。

\[
Z_k = P \cdot H_k \tag{7.1}
\]

\[
Z_k^T = [Z_1, Z_2, \ldots, Z_n] \tag{7.2}
\]

\[
H_k = [h_1^T, h_2^T, \ldots, h_n^T] \tag{7.3}
\]

\[
P = [P_1, P_2, \ldots, P_m] \tag{7.4}
\]

ただし、\(P_r^T = [v_{r,1}, v_{r,2}, \ldots, v_{r,s}] \) である。次に、\(\{ h_k \}_{k=1}^m \) の下

添字 \(x_{i_1} x_{i_2} \ldots x_{i_q} \) は入力端子 \(q \) からの入力 \(X_k \) に関する自己作用部分の非線形成分を示し、\(l_k \) はその次数を示しており、\(x_{i_1} x_{i_2} \ldots x_{i_q} \) の間では積算反の対称性が保たれる。\(k=1 \) のときには \(l_k = r \) となる。この場合には入力端の相互作用が存在せずに、一般化インパルス応答は \(h_k \) の形になる。ただし、\(k=2 \) とすれば \(\sum l_k = r \) のような形に \(k \) の次数の相互作用を考慮することができる。\(k \) の次数の相互作用が存在するときに、一般化インパルス応答は \(h_k \) の形になる。このとき入力 \(X_k \) に関しては \(l_k \) の次数の対称性が保たれる。なお上添字 \(i_1 i_2 \ldots i_q \) は一般化インパルス応答を離散化したときの、入力 \(X_k \) の \(1, 2, \ldots, s \) 個の座標を示し、これらの値のとりうる値の範囲は、サンプル時刻 \(p \) において \(1 \leq i_1 \ldots i_q \leq m \) を満たす。

（7）式より一般化インパルス応答 \(H_k \) を求める。\(\sum_{q=1}^{r} l_{iq} = r \) となる。\(\sum_{q=1}^{r} l_{iq} \leq m \) を満たす。
Fig. 1 A nonlinear single-input-output plant (a) to be measured and its output (b) for the input \(x(t) = \sin(140\pi t + 0.8) \).

--- indicates the calculated output using the identified Volterra kernels
Sampling interval: 1 msec
Number of points in discrete Volterra kernels: 152

\[
X_p = \sum_{\beta=1}^{p-1} a_{\beta} \sin(\omega_2 \tau + \phi_2) d\tau
\]

Fig. 2 (b) indicates the theoretical output
- indicates the calculated output using the identified Volterra kernels
Sampling interval: 1 msec
Number of points in discrete Volterra kernels: 324

4.2 入力1出力非線形系の同定

Fig. 2 (b) に示した測定対象を (10), (11) 式なる入力関数を用いて同定する。

\[
Y_p = \sum_{\beta=1}^{p-1} a_{\beta} \sin(\omega_2 \tau + \phi_2) d\tau
\]

5. おわりに

本論文の方法は、測定の対象とする系の入出力関係のみに注目して、係数行列 \(P \) の階数を増大させるとのような任意の入力波形を用いて \(P \) の行数を増やして行

(10) \[\varepsilon = \sum_{p=1}^{m} \left[Z_p \left(\sum_{r=1}^{n} \left(\frac{P}{i_{r=1}} \frac{P}{i_{r=1}} \ldots \frac{P}{i_{r=1}} \ldots \frac{P}{i_{r=1}} \right) \right) \right] \frac{1}{\sum_{p=1}^{m} (Z_p)^2} \]

多入力多出力系については同様の相対誤差率を考察する。