1. ま え が き

筆者らは、すでに拡張誤差の概念に基づく離散時間MRACS モデル構成適応制御系 (MRACS) の一設計法を提案している11,12. この手法では、プラントのパラメータはすべて未知と仮定したため、パラメータ調整則の実現にあたり、3 次の代数方程式を解かねばならなかった。このため、この MRACS の漸近安定性に関する検討は、必ずしも十分なものではなかった。また、筆者らは上記の手法を簡単化した方策についてその漸近安定性を考察したが56. その結果は人力信号の richness 条件を前提としたものであり、証明の完全性という点ではなお検討すべき余地が残されていた。

一方、Goodwin と 67 は、最近、筆者らの手法とは異なる離散時間 MRACS を対象にして、システムの安定性を証明するための手法を示した。この証明法の考え方は、補助パラメータ が (k) の有界性に着目すれば、筆者らの MRACS をも適用することができる。本論文は、このような観点から先に提案した MRACS の漸近安定性を明らかにすること。また、この MRACS では、プラントパラメータの変動範囲の上限が既知の場合には、適応アルゴリズムの簡易化を図ることができ、この場合にもシステムの漸近安定性が保証されることも併せて示す。

2. 考察すべき MRACS の概要

はじめに、本論文で考察すべき MRACS の概要について説明しておく。プラントおよび規範モデルとしては、つぎのものを考える。

プラント： \(A(z)x(k) = B(z)u(k) \) (1)

ただし,
\[
A(z) = z^n + \sum_{i=0}^{n-1} a_i z^i, \quad B(z) = \sum_{i=0}^m b_i z^i
\]

(\(m \leq n \))

規範モデル： \(A_M(z)x_M(k) = B_M(z)r(k) \) (2)

ただし,
\[
A_M(z) = z^{n-1} + \sum_{i=0}^{n-2} a_i z^i, \quad B_M(z) = \sum_{i=0}^m b_i z^i
\]

ここで、プラントのパラメータ \(a_i, b_i \) は未知の定数。 \(b_{n} > 0 \)。プラントの零点 \(B(z) = 0 \) の根はすべて \(z \) 平面上の単位円内に存在するものと仮定する。また、規範モデルは漸近安定であり、規範入力 \(r(k) \) は有界とする。ここで考える設計問題は、\(k \to \infty \) で \(x(k) \to x_M(k) \) ならしめるような \(u(k) \) を合成することである。

設計にあたり、まず \(n-1 \) 次の漸近安定な多項式
\[
F(z) = z^{n-1} + \sum_{i=0}^{n-2} f_i z^i
\]
（3）（図1）を用いて、(1) 式をつぎのように書き直す。

\[
x(k) = b_n z^{-1}u(k) + z^{-1}F^{-1}(z)D(z)u(k) + z^{-1}F^{-1}(z)C(z)x(k)
\]
（4）

ただし,
\[
D(z) = \sum_{i=0}^{n-2} d_i z^i, \quad C(z) = \sum_{i=0}^{n-1} c_i z^i
\]

ここで、\(d_i, c_i \) は (1) 式の \(a_i, b_i \) に対応した未知定数であり、\(A(z), B(z) \) が互いに既約であるかぎり、一意に定められる。

ここで、プラント・規範モデル間の出力誤差を、
\[
e(k) = x(k) - x_M(k)
\]
（5）とし、さらに拡張信号 \(w(k) \) を導入して拡張誤差 \(\xi(k) \) を、
\[
\xi(k) = e(k) + w(k)
\]
（6）

と定義すると、(4)～(6) 式より \(\xi(k) \) は、

\[
\xi(k) = b_n u(k-l) - a^T v(k-l) + w(k)
\]
（7）

ただし、

\[
v_i(k) = z^{i-1}F^{-1}(z)x(k), \quad i = 1 \sim n
\]
\[
v_{n+1}(k) = z^{n-1}F^{-1}(z)u(k), \quad i = 1 \sim n-1
\]
\[
v_{2n}(k) = z^l x_M(k)
\]
\[
v(k) = [v_1(k), \ldots, v_{2n}(k)]^T
\]

\[
\alpha = [-c_0, \ldots, -c_{n-1}, -d_0, \ldots, -d_{n-2}, 1]^T
\]

つぎに、2n + 1 項の可変パラメータ \(g_0(k), g(k) = [g_1(k), \ldots, g_{2n}(k)]^T \) および補助信号 \(v(k) \) を導入し、

\[
u(k) = g^T(k)v(k)
\]
（8）

（注1）特別な場合として、\(f_i = 0 \) (\(i = 0 \sim n-2 \)) としてもよい。
\[
\begin{align*}
\eta(k) &= (g(k) - g(k-l))^T \epsilon(k-l) \\
\epsilon(k) &= \frac{\phi(k)}{||v(k)||} \\
V(k) &= -2\eta(k)^T \Phi(k) \eta(k) \\
\Delta V(k+l, k) &= \sum_{\delta=0}^{\infty} \Delta V(k+l, k) \\
\end{align*}
\]

ただし、
\[
\phi(k) = [\phi_0(k), \phi_T(k)]^T, \quad \Phi(k) = \begin{bmatrix} g_0(k) - b & \Phi_0 \end{bmatrix}
\]

式 (10) に従って調節を進めることが出来る。このことから、\(k \to \infty \) で \(\eta(k) \to 0 \) なることが示される。
中村・鈴木：離散時間MRACSの増減安定性

\[\|v(k-l)\| \leq d_3 + d_2 \max_{0 \leq j \leq k} |e(j)| \quad (28) \]

ただし、
\[d_3 = d_1 + d_2 \]
ここで、\(\{v(k-l)\} \)を発散列と仮定すると、上式の関係より、\(\{e(k)\} \)も発散列ということになる。したがって、このとき
\[k_1 \to \infty \quad \text{で} \quad e(k) \to \infty \]
かつ、
\[k \leq k_1 \quad \text{に対して} \quad |e(k)| \leq |e(k_1)| \]
となるような時刻列 \(\{k_i\} \)が存在し、このような \(k_i \)
に対して、\(k_i \to \infty \)なるときつぎの関係が成り立つ。
\[\frac{|e(k_i)|}{|v(k_i-l)|} \geq \frac{|e(k_i)|}{d_3 + d_2 |e(k_i)|} \to \frac{1}{d_2} \quad (29) \]
上式の関係は（24）式の関係に矛盾する。したがって、\(\{e(k-l)\} \)が発散列になるという仮定は誤りであり、\(e(k-l) \)はすべての\(k \)に対して有界ということになる。

4. 簡単化アルゴリズムの増減安定性

文献2）で示したように、2章で述べた適応アルゴリズムは、プラントパラメータ \(b_m \)の変動範囲の上限 \(b_m \max \)があらかじめわかっている場合は、可変パラメータ \(g_0(k) \)を、
\[g_0(k) = g_0 > b_m \max /2 \quad (30) \]
として固定することにより、簡単化することができると、この場合の拡張誤差 \(\gamma(k) \)の値は（17）式において、\(\gamma_0 = 0 \)と置くことにより、つぎのように求められる。
\[\gamma(k) = e(k) / (1 + g_0 v^T(k-l) \Gamma v(k-l)) \quad (31) \]
この簡単化したアルゴリズムによっても、MRACSとしての安定性が保証されるこれは、つぎのようにして示すことができる。まず、\(g_0(k) = g_0 \)なる場合、拡張誤差方程式（12）式は、
\[\eta(k) = \phi^T(k) \eta(k-l) + (g_0 - b_m) v_0(k-l) \quad (32) \]
また、この場合、\(\phi(k) \)に対する調整則は（13）、（14）式より、
\[\phi(k) = \phi(k-l) - b_m \Gamma \eta(k-l) \gamma(k) \quad (33) \]
ここで、パラメータ誤差 \(\phi(k) \)のノルムとして、
\[V(k) = \phi^T(k) (b_m \Gamma)^{-1} \phi(k) \quad (34) \]
を考えると、\(\Delta V(k+l, k) \)は（32）式より、
\[\Delta V(k+l, k) = -2 \gamma(k+l) - (2g_0 - b_m) v^T(k) \Gamma v(k) \gamma(k+l) \quad (35) \]
（30）式の関係より、\(2g_0 - b_m > 0 \)。したがって、
\[\Delta V(k+l, k) < 0 \]
となる。この結果から \(k \to \infty \)で \(\gamma(k) \to 0 \)、\((\phi(k-l) - \phi(k-l)) \to 0 \)、\(e(k) \to 0 \)が結論できることは3章と同様である。

5. あとがき

以上、筆者らが先に示した離散時間MRACSについて、その増減安定性を明らかにした。本論文では、単一入力系について述べたものであるが、ここに示した証明法は、文献2）の多変数MRACSに対してもそのまま適用することができる。

参考文献
1) 鈴木：離散時間モデル推定型適応制御系の設計、計測自動制御学会論文集、13-5, 433/438 (1977)
2) 中村：多変数離散時間モデル推定型適応制御系の設計計画、計測自動制御学会論文集、13-3, 284/290 (1979)
3) 鈴木、中村：離散時間モデル推定型適応制御系の増減安定性、計測自動制御学会論文集、16-1, 130/136 (1980)