直流電動機の効率最適化適応制御系

Efficiency Optimized Adaptive Control System for DC Motor

Kohei SUDOH, Tadashi EGAMI and Takeshi TSUCHIYA

1. まえがき

筆者らの研究室においてはすでに最適制御理論を用いた効率最適化速度制御系構成法を他直流電動機系
へ適用した場合の有効性をシミュレーションおよび実験により確認してきた。電動機運転の際には回転
速度や負荷速度などによりパラメータが大きく変化す
る。さらに非線形モデルを線形化していることおよび
効率最適化に伴う速度に依存するパラメータ変化を考
慮すると、運転状況により刻々とパラメータが変動し
ていると考えられる。いかなる運転状況においても所
望の設定速度で運転できることが望ましい。文献 2)に
直流電動機速度制御への適応制御の応用が示されてい
るように、制御系設計法として適応制御 3) 4)を適用す
ればさらに良い制御性能が期待できる。直接形適応制
御則を他直流電動機の効率最適化速度制御に適用し
、シミュレーションを行った結果、任意の動作点にお
いて、負荷変動およびパラメータ変化にかかわらず良
好な目標値追従性能を得たのでその結果を報告する。

2. 計算モデルおよび効率最適化の原理

制御対象の他直流電動機系の数式モデルは次式で与
えられる。

\[
\begin{align*}
\frac{d\omega(t)}{dt} &= -\frac{1}{\tau_m} \omega(t) + \frac{KL(t)I_r(t)}{J} - \frac{T_l(t)}{J} \\
\frac{dI_r(t)}{dt} &= -\frac{1}{\tau_a} I_r(t) - \frac{k_{a} \omega(t)}{L_a} + \frac{V_a(t)}{L_a} \\
\frac{dI_f(t)}{dt} &= -\frac{1}{\tau_f} I_f(t) + \frac{V_r(t)}{L_f}
\end{align*}
\]

(1)

\(\omega(t)\): 回転角速度

\(L(t)\): 電機子電流

\(I_r(t)\): 磁磁流

\(V_a(t)\): 電機子電圧

\(V_r(t)\): 磁磁電圧

\(T_l(t)\): 定トルク負荷

この系の制御可能な損失 \(L \) を(2)式のように電機子
電流 \(I_a \) と磁磁電流 \(I_r \) の 2 乗に比例した項の和と近
似して扱う。

\[
L = k_f I_a^2 + k_p (\omega(t)) I_a^2
\]

(2)

ここで \(k_f (\omega) \) は回転速度 \(\omega = \omega_0 \) の動作点で線形化した係熟であり、(2)式のような近似が成り立つことは
確かめられている。出力一定の条件のもとでこの \(L \) を
最小にする \(I_a \) と \(I_r \) との比は

\[
\frac{I_a}{I_r} = \sqrt{\frac{k_f (\omega_0)}{k_p}} \quad \alpha = \frac{V_a}{V_r} = \frac{R_a}{R_f} \quad \frac{V_a}{V_r} = \frac{k_f (\omega_0)}{k_p} \quad \alpha \leq \frac{V_a}{V_r}
\]

(3)

(4)

(5)

(6)

3. 制御系構成

(1)式を線形明らか化し、DARMA モデルを(5)式
とする。

\[
A(q^{-1})\omega(t) = B(q^{-1})V_r(t) + k
\]

(5)

\[
A(q^{-1}) = 1 + a_1 q^{-1} + a_2 q^{-2} + a_3 q^{-3}
\]

ここで \(k \) は非線形モデルを各動作区で線形化した際の
定数項と外乱項をオフセットとしてひとまとめて扱う
ものとする。(5)式より \(\omega(t+1) \) は次式となる。

\[
\omega(t+1) = \psi(t) \theta_0
\]
Fig. 1 コントロールシステムの構造

\[\phi(i) = [a(i) \omega(i-1) \omega(i-2) Vf(i) Vf(i-1) Vf(i-2)] \]
\[\theta(i) = [a_0 a_1 a_2 \beta_0 \beta_1 \beta_2 \kappa] \]

このモデルのパラメータを逐次推定し、出力 \(\omega(i) \) を目標値 \(\phi_{\text{ref}}(i) \) に追従させるような制御入力 \(V_r(i) \) を次式のように求める。

\[V_r(i) = \frac{1}{\beta(i)} \omega_u (i+1) - \theta(i) \phi(i) \]
\[\phi(i) = [a(i) \omega(i-1) \omega(i-2) Vf(i) Vf(i-1) Vf(i-2)] \]
\[\theta(i) = [a_0 a_1 a_2 \beta_0 \beta_1 \beta_2 \kappa] \]

パラメータ調整則は次式に示す逐次最小2乗法を用いる。

\[\delta(i) = \delta(i-1) + \frac{\lambda_0(i) \lambda_1(i) P(i-1) \phi(i) \phi^T(i) \theta(i-1)}{1 + \lambda_0(i) \lambda_1(i) \phi^T(i) P(i-1) \phi(i)} \]

\[P(i) = \frac{1}{\lambda_0(i)} \left(P(i-1) - \frac{\lambda_0(i) \lambda_1(i) P(i-1) \phi(i) \phi^T(i) P(i-1)}{1 + \lambda_0(i) \lambda_1(i) \phi^T(i) P(i-1) \phi(i)} \right) \]

\(\lambda_0(i) \) の選び方は、将来にわたりパラメータが変化することを想定し、また計算時のオーバーフローをさせるため、両限トレースゲイン方式によるものとした。

Fig. 1 に制御系構成図を示す。

4. 結果

シミュレーションにより上記の方法を適用した結果を示す。対象としたものは定格 1.5 kW, 1500 rpm, 電積子電圧 100 V, 電磁子電流 18.5 A, 2 枚の他励直流電動機である。また (4) 式の \(\alpha \) は 1.35 (1350 rpm), 1.42 (1500 rpm) である。

Fig. 2 に回転速度が 1500 (rpm) のとき、定常状態における効率改善の効果を示す。軽荷変態において、効率が昇温一定制御の場合に比べて数％～10％程度改善されているのがわかる。Fig. 3 にステップ状のパラメータ変化、外乱を与えた場合の応答を示す。機械的時定数 \(\tau_m \) を 100% 負荷時の 1.67 (s) から 50% 負荷時の 2.75 (s) に変化させ、外乱は定トルク負荷 \(T_l(t) \) を無負荷の状態から 90% 負荷にさせたものである。

Fig. 4 にこの場合について立ち上がりからの応答を示す。
参考文献

1) 江上、土谷：他励直流電動機の効率最適化速度制御法，計測自動制御学会論文集，20-5, 466/468 (1984)
3) 内門、金井、杉山：確定的未知外乱を含む多変数離散時間適応制御系の設計，21-2, 131/136 (1985)
5) 細中、離散時間形パラメータ推定。第14回適応制御部会講演会 XIV 資料，60-3 (1985)
6) 江上、山本、土谷：最適制御理論を用いた効率最適化速度制御系構成，計測自動制御学会論文集，21-4, 345/362 (1985)