A Study on Finite Spectrum Assignment for Systems with Non-Commensurate Time-Delays

Koichi SUYAMA* and Toshiyuki KITAMORI**

This paper studies the finite spectrum assignability of systems with non-commensurate time-delays. A new notion of coprimeness over polynomial matrices of several variables is introduced. Using some results about the coprimeness, this paper presents a necessary and sufficient condition for the finite spectrum assignability of the systems represented by state equations. And furthermore, this paper compares it with the existing condition.

Key Words: time-delay system, non-commensurate time-delays, finite spectrum assignment, polynomial matrix of several variables, coprimeness

1. はじめに

工学のさまざまな分野に数多く存在するむだ時間系は、一般に可算無限個のスペクトルをもつ、有限極配置の特徴をもつシステムにおいて任意に指定された有限個のスペクトルだけをもつような制御系を構成するものである。その工学的重要性から、現在まで広く研究されている。制御対象に含まれるむだ時間が一つの場合、exp 型時間関数を積分値にもつ有限ラプラス変換を用いた制御則により、スペクトル可制御性が有限極配置可能であるための必要十分条件となることが示された。制御則の設計法も与えられている。しかしむだ時間が複数の場合には、可能条件・設計法など、いくつかの成果は得られているが、たとえば有限極配置の場合には、

* Chiba Institute of Technology, Narashino
** Faculty of Engineering, University of Tokyo, Bunkyo-ku, Tokyo
(Received July 6, 1990)
(Revised February 15, 1991)
2. minor 既約な行列に関する考察

本論文では、むだ時間 $t_i \,(i=1,\cdots, m)$ に対応する時間遅れ作用素 $x_i: f(t) \rightarrow f(t-L_i)$ を用いて、状態方程式

$$x(t) = Ax(t) + bu(t), \quad y(t) = c^T x(t) \quad (1), \quad (2)$$

$A \in \mathbb{R}^{[z_1, \cdots, z_m]}$, $b \in \mathbb{R}^{[R(x_1, \cdots, x_m)]}$

などが与えられる。入出力系を議論の対象とする。なお、x_i はラプラス変換された s 領域では

$$z_i = \exp(-L_i s), \quad i=1,\cdots, m \quad (3)$$

と表される。系 (1), (2) で (A, b) がスペクトル可制御である (A, c^T) がスペクトル可観測であるとは、任意の $s \in \mathbb{C}$ に対しそれぞれつきの (4), (5) 式が成立つこととする。

$$\text{rank} \begin{bmatrix}sI-A & b \end{bmatrix} = n \quad (4)$$

$$\text{rank} \begin{bmatrix}sI-A^T & c \end{bmatrix} = n \quad (5)$$

系 (1), (2) に関連して、変数 s, z_1, \cdots, z_m を含む多項式行列の minor 既約性を定義する。

【定義】 $P \in \mathbb{R}^{[z_1, \cdots, z_m]}$ が minor 既約であるとは、$I \times (l+1)$ 行列 $[P \, q]$ のすべての最小行列式的最大共因子 (≠0) が R に属することである。この minor 既約性と系 (1), (2) のスペクトル可制御性・可観測性の間には以下の関係がある。

【補題 1】 系 (1), (2) に関して、つきの (A), (B) が成立つこと。

(A) スペクトル可制御

$$\Rightarrow (sI-A, b) : \text{minor 左既約}$$

(B) スペクトル可観測

$$\Rightarrow (sI-A^T, c) : \text{minor 左既約}$$

(証明) 文献 8 の補題 2 と同様に証明できる。
定理1

\[r^TP^{-1} = k^T r^{-1} \quad (11) \]
となる。 （7）（8）式を考慮すると、これは \((PT, r) \) が minor 左既約であることに矛盾している。したがって、（7）式の \((a, b)\) は minor 左既約である。

（7）式の形以外に（6）式を満たす minor 左既約な \((a, b)\) が存在しないことは補題 A.2 より明らかである。

（2）（B）→（A）の証明： \(X \cup (k + 1) \) 行列 \([P' Q']\) の第 \(k \) 列 \((k = 1, \ldots, l + 1)\) でした場合の最大行列式

\[\bar{P}_k = (\frac{1}{(k - 1)^{l-k}} \text{adj } P Q_k) \quad (k = 1, \ldots, l) \]

（12）式の \([P' Q']\) は adj \(P Q \) の \((k, 1)\) 要素を表す。いま、

\((P, q) \) が minor 左既約でなく、 \([P' Q']\) の最大行列式が共通因子 \(\xi \in \mathbb{R}[s, z_1, \ldots, z_m] \) をもつとする。このとき、（12）式より adj \(P Q \) の各要素と det \(P \) はその \(\xi \) 共通因子のとも。さらに、（7）式の \((a, b)\) も \(\xi \) 共通因子にもも。これは \((a, b)\) の minor 左既約性に矛盾する。

この補題を用いて、本章の主結果である、minor 左既約な行列のランクを示す点に関する新しい定理を導く。

\[\text{det } \bar{P}_k = 0 \quad (k = 1, \ldots, l) \]

（13）式を得る。また、（17）式の関係より

\[A_\lambda (PT, r) = A_\lambda (det P, adj P) \]

（18）式が成立する。したがって、（18）式に（17）、（19）式を用いれば題意が成り立つ。

（2）（B）→（A）の証明： \(X \cup (k + 1) \) 行列 \([P' Q']\) の第 \(k \) 列 \((k = 1, \ldots, l + 1)\) でした場合の最大行列式

\[\text{det } \bar{P}_k = 0 \quad (k = 1, \ldots, l) \]

（12）式の \([P' Q']\) は adj \(P Q \) の \((k, 1)\) 要素を表す。いま、

\((P, q) \) が minor 左既約でなく、 \([P' Q']\) の最大行列式が共通因子 \(\xi \in \mathbb{R}[s, z_1, \ldots, z_m] \) をもつとする。このとき、（12）式より adj \(P Q \) の各要素と det \(P \) はその \(\xi \) 共通因子のとも。さらに、（7）式の \((a, b)\) も \(\xi \) 共通因子にもも。これは \((a, b)\) の minor 左既約性に矛盾する。

この補題を用いて、本章の主結果である、minor 左既約な行列のランクを示す点に関する新しい定理を導く。

\[A_\lambda (PT, r) = A_\lambda (det P, adj P) \]

（18）式が成立する。したがって、（18）式に（17）、（19）式を用いれば題意が成り立つ。

（2）（B）→（A）の証明： \(X \cup (k + 1) \) 行列 \([P' Q']\) の第 \(k \) 列 \((k = 1, \ldots, l + 1)\) でした場合の最大行列式

\[\text{det } \bar{P}_k = 0 \quad (k = 1, \ldots, l) \]

（12）式の \([P' Q']\) は adj \(P Q \) の \((k, 1)\) 要素を表す。いま、

\((P, q) \) が minor 左既約でなく、 \([P' Q']\) の最大行列式が共通因子 \(\xi \in \mathbb{R}[s, z_1, \ldots, z_m] \) をもつとする。このとき、（12）式より adj \(P Q \) の各要素と det \(P \) はその \(\xi \) 共通因子のとも。さらに、（7）式の \((a, b)\) も \(\xi \) 共通因子にもも。これは \((a, b)\) の minor 左既約性に矛盾する。

この補題を用いて、本章の主結果である、minor 左既約な行列のランクを示す点に関する新しい定理を導く。

\[A_\lambda (PT, r) = A_\lambda (det P, adj P) \]

（18）式が成立する。したがって、（18）式に（17）、（19）式を用いれば題意が成り立つ。

（2）（B）→（A）の証明： \(X \cup (k + 1) \) 行列 \([P' Q']\) の第 \(k \) 列 \((k = 1, \ldots, l + 1)\) でした場合の最大行列式

\[\text{det } \bar{P}_k = 0 \quad (k = 1, \ldots, l) \]

（12）式の \([P' Q']\) は adj \(P Q \) の \((k, 1)\) 要素を表す。いま、

\((P, q) \) が minor 左既約でなく、 \([P' Q']\) の最大行列式が共通因子 \(\xi \in \mathbb{R}[s, z_1, \ldots, z_m] \) をもつとする。このとき、（12）式より adj \(P Q \) の各要素と det \(P \) はその \(\xi \) 共通因子のとも。さらに、（7）式の \((a, b)\) も \(\xi \) 共通因子にもも。これは \((a, b)\) の minor 左既約性に矛盾する。

この補題を用いて、本章の主結果である、minor 左既約な行列のランクを示す点に関する新しい定理を導く。

\[A_\lambda (PT, r) = A_\lambda (det P, adj P) \]

（18）式が成立する。したがって、（18）式に（17）、（19）式を用いれば題意が成り立つ。
きの条件 (a), (b) が成り立つことをいう。

(a) \(P_{U_1} + q u_1 = \alpha(s_1, \ldots, z_m)I \) が成り立つとすると \(U_1 \in \{ R(s, z_1, \ldots, z_m) \}^{(i+1)x(i+1)} \), \(u_1 \in \{ R(s, z_1, \ldots, z_m) \}^{(i+1)x(i+1)} \), \(\alpha(z_1, \ldots, z_m) \in R(z_1, \ldots, z_m) \) が存在する。

(b) \(P_{U_1} + q u_1 = \alpha(s)I \) が成り立つとすると \(U_1 \in \{ R(s, z_1, \ldots, z_m) \}^{(i+1)x(i+1)} \), \(u_1 \in \{ R(s, z_1, \ldots, z_m) \}^{(i+1)x(i+1)} \), \(\alpha(z_1, \ldots, z_m) \in R(z_1, \ldots, z_m) \) が存在する。

\(s \) を特別な変数として扱うこの \(s \)-左既約性は行列 \(P \) に対する列操作とつきのような関係がある。

【命題 1】 \(P \in \{ R(s, z_1, \ldots, z_m) \}^{(i+1)x(i+1)} \), \(q \in \{ R(s, z_1, \ldots, z_m) \}^{(i+1)x(i+1)} \) に関して \((P, q) \) が \(s \)-左既約であることはつきの条件 (A), (B) が成り立つことと等価である。

(A) 行列 \(P, q \) を \(R(s_2, \ldots, z_m) \) 上の列操作により \([I_0] \) という Hermite form にすることができるなら、すなわち、次式を満たす行列 \(W \in \{ R(s_2, \ldots, z_m) \}^{(i+1)x(i+1)} \) が存在する。

\(\begin{bmatrix} P & q \end{bmatrix} W = [I_0], \quad \det W(\neq 0) \in R(s_1, \ldots, z_m) \) が存在する。

(B) 行列 \(P, q \) を \(R(s_1, \ldots, z_m) \) 上の列操作により \([I_0] \) という Hermite form にすることができるなら、すなわち、次式を満たす行列 \(W \in \{ R(s_1, \ldots, z_m) \}^{(i+1)x(i+1)} \) が存在する。

\(\begin{bmatrix} P & q \end{bmatrix} W = [I_0], \quad \det W(\neq 0) \in R(s_2, \ldots, z_m) \) が存在する。

(証明) 参照 2.

さらに \(s \)-左既約性と minor 左既約性の間にはつきのような関係がある。

【補題 3】 \(P \in \{ R(s, z_1, \ldots, z_m) \}^{(i+1)x(i+1)} \), \(q \in \{ R(s, z_1, \ldots, z_m) \}^{(i+1)x(i+1)} \) に関して、つきの条件 (A), (B) が等価である。

(A) \((P, q) \) は \(s \)-左既約

(B) \(\{ P, q \} \) は minor \(s \)-左既約、かつ、(26) 式における \(U_1 \) が \(R(s, z_1, \ldots, z_m) \) 上の列操作により \([I_0] \) という Hermite form になることができるなら、すなわち、次式を満たす行列 \(W \in \{ R(s, z_1, \ldots, z_m) \}^{(i+1)x(i+1)} \) が存在する。

\(\begin{bmatrix} P & q \end{bmatrix} W = [I_0], \quad \det W(\neq 0) \in R(s, \ldots, z_m) \) が存在する。

(証明) 参照 7.

(注意 3) むだ時間系としての性質であるスペクトル可測性とは違い、\(s \)-左既約性も minor \(s \)-左既約性と同様に (m+1)-D システムとしての性質である。注意 1 の例は \(s \)-左既約であってスペクトル可測ではない例に該当している。すなわち \((sIA, b) \) が minor \(s \)-左既約であり、(26) 式を満たす。

\[U_{s1} = \begin{bmatrix} 0 & 0 \\ z_1 & z_1 \end{bmatrix}, \quad u_{s1} = \begin{bmatrix} z_1 + s z_2 \end{bmatrix}, \quad \beta(s) = s \]

が存在するので、補題 3 より \((sIA, b) \) が \(s \)-左既約である。しかし、スペクトル可測性ではない（注意 1）。

また、\(m=1 \) の場合には \(s \)-左既約性と minor \(s \)-左既約性は等価になる。しかし、\(m=2 \) の場合には minor \(s \)-左既約性は \(s \)-左既約性の必要条件にすぎない。たとえば、4.2 節で与える数値例（の \(sIA, b \) は minor \(s \)-左既約では \(s \)-左既約である例である）。

他の定理は \(s \)-左既約性と多項式列がランクをもつする列の関係を述べたものである。

【定理 2】 \(P \in \{ R(s, z_1, \ldots, z_m) \}^{(i+1)x(i+1)} \), \(q \in \{ R(s, z_1, \ldots, z_m) \}^{(i+1)x(i+1)} \) に関して、\((P, q) \) が minor \(s \)-左既約であるとき、つきの条件 (A), (B) が等値である。

(A) \((P, q) \) は \(s \)-左既約

(B) \(A_s(P, q) \) は有限集合

ただし、

\[A_s(P, q) = \{ s \in \mathbb{C} | \text{rank}[P(s, z_1, \ldots, z_m)] < 1 \} \]

for some \((z_1, \ldots, z_m) \in

(証明)

(i) \((A) \rightarrow (B) \) の証明： \((P, q) \) は \(s \)-左既約だから、定義より、(26) 式が存在する。\((26) \) 式右辺のランクは \(\beta(s) \) の零点で 0 である。したがって、\(s_0 \in A_s(P, q) \) に対して必ず \(\beta(s_0) = 0 \) でなければならないから、

\[A_s(P, q) \subset \{ s \in \mathbb{C} | \beta(s) = 0 \} \]

である。\((26) \) 式右辺は有限集合であるから、条件 (B) が成り立つ。

(ii) \((B) \rightarrow (A) \) の証明： \((P, q) \) は minor \(s \)-左既約だから\((17) \) 式が成り立つ。さらに条件 (B) より、(17) 式が表わす集合の要素がとりうる \(s \) の値は有限個である。そこで、そのような \(s \) の値だけを零点としてもつような多項式 \(\beta(s) \in \mathbb{R}[s] \) を考え、新たに変数 \(x \) をつけると、各 \(P \), \(\text{adj } P \) の要素、および \(1-\beta(s) \) は \(\mathbb{R}[s, z_1, \ldots, z_m] \) 上で零既約 \(\beta(s) \) でなくそれらを同時に 0 にする \((s, z_1, \ldots, z_m, x) \in \mathbb{C}^{m+n} \) は存在しない。したがって

\[(sI - A, b) \]

とおいて、\(x = 1/\beta(s) \) とおいて、

\[\beta(s) \]
4. 状態方程式に対する有限階配置可能条件

4.1 文献6の条件と等価な条件

文献6の定理1は複数のむだ時間を含む1入力系の伝達関数に対する有限階配置可能条件を与えている。その定理に前章の結果を用いることによって、本論文の主結果の一つである次に述べる定理が得られる。

《定理4》 1入出力系（1）、（2）に対して、補償器

\[c = \frac{b}{q} \]

\[\tilde{p}, \tilde{q} \in \Theta([s, z_1, \ldots, z_m]) \]

で、\(\delta \geq \deg \tilde{p}, \tilde{q} \) は \(s \) に関してモニックを用いた出力フィードバックにより、\(s \) に関して \(2n \)次のモニックな任意の \(\phi \in \mathbb{C}[s, z_1, \ldots, z_m] \) に対し、\(V_{\phi} \) が有限階配置可能であるための必要十分条件は、つきの条件（A）、（B）があることである。

（A） \((sI - A, b) = s - 1 \) 既約、かつ、

\((A, b) : \) スペクトル可制御

（B） \((sI - A, c) = s - 1 \) 既約、かつ、

\((A, c) : \) スペクトル可観測

ただし \(\Theta \) は \(\sigma \) 型時間関数を偏分解につけ有限ラプラス変換のクラス \(\sigma \)，deg(\cdot) s に関する次数を表す。

（証明）系（1），（2）の伝達関数は

\[q = n_0 d_0 \]

\[d_0 = \det(sI - A), n_x = e^{cT} \]

である。（文献6）より、本定理の意味で有限階配置可能であるための必要十分条件は

（a） \((sI - A, n_x) = s - 1 \) 既約

（b） スペクトル可制御かつスペクトル可観測である。この条件（a）、（b）を本定理の条件（A）、（B）が等価であることとは補題2および定理3より明らか。

（注意6）定理4の内容はユニモジュラ行列 \(T \in \mathbb{C}[s, z_1, \ldots, z_m]^{n \times n} \) による状態空間の基底変換

\[x(i) = T x(i) \]

が導かれる。さらに（注意5参照）。

むだ時間が一つ \((m = 1)\) の場合、\(\sigma \) 型時間関数を積分値につけ有限ラプラス変換のクラスを制御則に用いると、\(s \) 既約性とスペクトル可制御性が有限階配置可能条件になる。また、\(m = 1 \) は \(s \) 既約性と \(s \) 既約性との必要十分条件である。定理4は、\(s \) 既約性の観点により、そのような制御則による有限階配置に関して、むだ時間の個数 \(m \) および状態方程式・伝達関数という系の表現を統一した体系的な議論ができることを示している。

4.2 文献6の条件との比較

Watanabeは、状態方程式（1）で与えられる1入力系のうち、入力ベクトル \(b \) にむだ時間が含まれる場合、すなわち \(b \in [R[z_m]]^{n \times 1} \) という場合を扱っている。制御則には数值計算で求められるような時間関数を積分値関数につけ有限ラプラス変換を用い、有限階配置可能であるための十分条件としてつきのように条件を与えている。

\[\det U_s = a \exp(-\lambda s), a(\neq 0) \in R, \lambda(\neq 0) \]

ただし、\(U_s \) は次式の可到達行列である。

\[U_s = \begin{bmatrix} b & A b & \cdots & A^{n-1} b \end{bmatrix} \]

\[A = A \exp(-L s), \cdots, \exp(-L s) \]

\[b = b \exp(-L s) \]

以下、（1）式で表わされる1入力系に関して、文献
5) の条件 (39) と定理 4 の条件 (A) を比較する。
文献 5) の条件は \(b \in \mathbf{R}[x_{n}] \)** というクラスの系の有限極配置可能性に関するものである。一方、定理 4 の条件は \(b \in (\mathbf{R}[x_{n+1}, \ldots, z_{m+1}])^{**} \) というクラスの系の有限極配置可能性に関するものである。したがって、定理 4 の条件 (A) のほうがより広いクラスの系に対して有限極配置可能条件を与える。

つぎに、入力系 (1) のうちで文献 5) が扱っている \(b \in \mathbf{R}[x_{n}]^{**} \) という場合を考えて、文献 5) の条件 (39) と定理 4 の条件がそれぞれ説明する系のクラスを比較する。すなわち、条件 (39) は、制御系に用いる有限ラプラス変換のクラスは広いものの、定理 4 の条件 (A) を内包するより広いクラスを与えているわけではない。以下、例を与えることによりそれを示す。

＜数値例＞

(1) 条件 (39) を満たし、定理 4 の条件 (A) を満たさない系 (文献 5) の例)

\[
A = \begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}, \quad b = \begin{bmatrix}
0 \\
z_2
\end{bmatrix}
\]

(i) 条件 (39) に関して

\[
\det U_r = -z_2 = -\exp(2/L_1 L_2)z
\]

であり、条件 (39) を満たしていない。

(ii) \(s \)-左既約性に関して: \(\{sI-A, b\} \) の最小行列式は \(s^2 - (z_1 + 1)s - z_2 \) であり、定理 4 の条件 (A) は \(s \)-左既約でない。

(2) 定理 4 の条件 (A) を満たし、条件 (39) を満たさない系

\[
A = \begin{bmatrix}
z_1 & z_2 - 1 \\
0 & 1
\end{bmatrix}, \quad b = \begin{bmatrix}
0 \\
z_2
\end{bmatrix}, \quad a_{21}, a_{22} \in \mathbf{R}[x_{n+1}, \ldots, z_{m}]
\]

(i) 条件 (39) に関して

\[
\det U_r = -z_1 + 1
\]

であり、条件 (39) を満たしていない。

(ii) \(s \)-左既約性に関して: \(\{sI-A, b\} \) の最小行列式は \(s^2 - (z_1 + 1)s - z_2 \) であり、定理 4 の条件 (A) は \(s \)-左既約でない。

5) の条件 (39) と定理 4 の条件 (A) を比較する。

文脈 5) の条件は \(b \in (\mathbf{R}[x_{n+1}])^{**} \) というクラスの系の有限極配置可能性に関するものである。一方、定理 4 の条件は \(b \in (\mathbf{R}[x_{n+1}, \ldots, z_{m+1}])^{**} \) というクラスの系の有限極配置可能性に関するものである。したがって、定理 4 の条件 (A) のほうがより広いクラスの系に対して有限極配置可能条件を与える。

つぎに、入力系 (1) のうちで文献 5) が扱っている \(b \in \mathbf{R}[x_{n}]^{**} \) という場合を考えて、文献 5) の条件 (39) と定理 4 の条件がそれぞれ説明する系のクラスを比較する。すなわち、条件 (39) は、制御系に用いる有限ラプラス変換のクラスは広いものの、定理 4 の条件 (A) を内包するより広いクラスを与えているわけではない。以下、例を与えることによりそれを示す。

＜数値例＞

(1) 条件 (39) を満たし、定理 4 の条件 (A) を満たさない系 (文献 5) の例)

\[
A = \begin{bmatrix}
z_1 & z_2 - 1 \\
0 & 1
\end{bmatrix}, \quad b = \begin{bmatrix}
0 \\
z_2
\end{bmatrix}, \quad a_{21}, a_{22} \in \mathbf{R}[x_{n+1}, \ldots, z_{m}]
\]

(i) 条件 (39) に関して

\[
\det U_r = -z_1 + 1
\]

であり、条件 (39) を満たしている。

(ii) \(s \)-左既約性に関して: \(\{sI-A, b\} \) の最小行列式は \(s^2 - (z_1 + 1)s - z_2 \) であり、定理 4 の条件 (A) は \(s \)-左既約である。

5. おわりに

複数のむだ時間を含む系に対する代数的議論のため、(m+1) 変数多項式行列に関して一つの変数 s を特に扱った新しい既約性 (s-左既約性) の概念を導入した。そして、その s-左既約性に関する考察に基づき、複数のむだ時間を含む系の有限極配置可能条件を考察し、以下の点が明らかになった。

(a) 文献 6) の有限極配置では、伝達関数 - 状態方程式のどちらにおいても s-左既約性が本質的である。

(b) 文献 5) までの系の有限ラプラス変換を制御系に用いるもので、文献 5) の条件に対応する系のクラスが文献 6) の条件に対応するクラスを内包しているわけではない。

(a) によって、むだ時間が一つの場合の議論を包含し
た形で、exp 型時間関数を積分値に方有有制程度変換のクラスを制御則に用いた有限極配置が、s 左既約性の概念を中心に体系化できることを示した。

（m + 1）变数多項式行列の s 左既約性は (m + 1)−D システムとしての性質であり、その物理的意味を明確にすることが今後の課題である。

参考文献

1. minor 左既約性に関する補題

【補題 A.1】

\[g = r^T P^{-1} q \]

(1.1)

\[P = (\mathbb{R}[s, z_1, \ldots, z_m])^{10} \]

(1.1)

\[r, q \in (\mathbb{R}[s, z_1, \ldots, z_m])^{10} \]

(1.1)

\[(P, q) : \text{minor 左既約} \]

(1.1)

であるとき、つぎの条件 (A), (B) は等価である。

(A) \[g \in (\mathbb{R}[s, z_1, \ldots, z_m])^{10} \]

(1.1)

(B) \[r^T P^{-1} \in (\mathbb{R}[s, z_1, \ldots, z_m])^{10} \]

(1.1)

(証明)

(i) 条件 (B) → 条件 (A) の証明：明らか。

(ii) 条件 (A) → 条件 (B) の証明：(P, q) が minor 左既約だから

\[PU + qv = a(z_1, \ldots, z_m)I \]

(2.1)

を満たすような \[a(z_1, \ldots, z_m) \in \mathbb{R}[s, z_1, \ldots, z_m], \ U \in (\mathbb{R}[s, z_1, \ldots, z_m])^{10}, v \in (\mathbb{R}[s, z_1, \ldots, z_m])^{10} \] が存在する。