予見サーボ系の設計と一般化予測制御（GPC）システムについて

江上 正**・土谷 武士**・愛田 一 雄***
北森 俊 行****

Preview Servo System Design and Relation with GPC System

Tadashi EGAMI*, Takeshi Tsuchiya**, Kazuo AIDA*** and Toshiyuki Kitamori****

Generalized Predictive Control (GPC) utilizing information on predicted future controlled variables of the controlled object has been proposed and has become of major interest. Some points are left unclear, for example, relation between the control system performance and the parameters of performance index employed has not been cleared in the GPC system and the GPC system is not always stable.

In this paper, preview servo system design method for the ARMAX by means of principle of optimality is proposed. This system is always guaranteed to be stable, and desirable number of preview steps and asymptotical properties of the control system are theoretically derived.

Using the result of this preview servo system, GPC system is constructed by means of principle of optimality.

Relation between the preview servo system and GPC system is examined to obtain properties of the preview servo system as compared with GPC system.

Key Words: GPC, preview servo system, principle of optimality, ARMAX model

1. まえがき

近年，プロセス制御の分野において，目標値の未来値を利用するモデル予測制御が注目され，実プラントへの応用も広く行われるようになっているが，現在対応されている代表的なアルゴリズムは，MAC（Model Algorithm Control），DMC（Dynamic Matrix Control）などである。これらのアルゴリズムでは，プラントモデルの予測出力をインパルス応答やステップ応答を使って表現しており，プラントの動特性を直観的に捉えやすいという利点がある。しかし，このモデルはかなり多くのサンプル数で表現しなければならないため，制御則が長くなり，その計算に時間がかかることを共に，計算機も大きな記憶容量を必要とするという欠点もある。

これに対して，ARMAX（Auto-Regressive Moving-Average Exogeneous）モデルは，同じ軸にその数を決定しなければならないという煩わしさがあるが，少ないパラメータで表現できるので制御則が簡単になり，その計算時間と計算機の記憶容量が大幅に減少できるという長所がある。

D. W. Clarkeら2)4)は最近，ARMAXモデルに対するステップ状外乱を想定して表現したCARIMA（Controlled Auto-Regressive Integrated Moving-Average）モデルを用いるGPC（Generalized Predictive Control）提案し，注目を集めている。このGPCは未来目標値を利用してプラントの制御性能を改善しようとする一種のディジタル予測制御である。しかし，設計の評価関数に使われる多くの設計パラメータと設計さ
れた制御系の特性との関係が明確でなく、制御系が安定
になるように設計パラメータの選択に考慮が必要である
という好ましくない性質もっている4。未来目標値を
利用する予見制御系としては最適性の原理を用いた予見
サーボ系5なども提案されており、GPC システムとの関
係についての考察などは興味深いテーマと思われる。

本論文ではまず CARIMA モデルで表わされた 1 入出
力プラントに対して、GPC で用いる評価関数に制御を
重ねられた設計パラメタの変更を用いて最適性の原理を用いた予見
サーボ系を構成する。構成された制御系は安定な系であり、
必要な予見ステップ数や評価関数の重みに対する制御系
の衡突特性などは明らかである。これは上述の GPC の
好ましくない性質を回復した一つの設計法となっている
。つぎにこの結果によって制御結果の著しさを示したうた
たれた GPC と最適性の原理を用いて誘導する。これによって
GPC および予見サーボ系の比較が可能となり、GPC などの
モデル予測制御が日本をはじめとした多くの研究者によ
って扱われてきた予見制御と同様のものであることを明
らかとする。また、これより GPC の評価関数に使われ
る設計パラメータと制御系の性質の関係を明らかにする
ための手がかりを示す。最後に本論文で提案する予見サーボ系の性質について検討
を行う。

2. CARIMA モデルを用いた予見サーボ系の
設計
2.1 制御対象
制御対象として次式の CARIMA モデルで表わされる
1 入出力線形プラントを考える。

\[A(z^{-1})y(k) = B(z^{-1})z^{-Lm}u(k-1) + d(k) \quad (1) \]

ただし、

\[A(z^{-1}) = 1 + a_1 z^{-1} + \ldots + a_n z^{-n} \]

\[B(z^{-1}) = b_0 + b_1 z^{-1} + \ldots + b_m z^{-m} \]

ここで、\(m \leq n \leq 1, L_m \geq n-m-1 \) であり、\(A(z^{-1}) \) と
\(B(z^{-1}) \) は互いに既約であるとする。また \(d(k) \) はステッ
プ外乱などを考慮して \(d(k) = \eta(k)/\Delta \eta(k) \)：無関係なラン
ダム系列、\(\Delta = 1-z^{-1} \) とすると。2

以下の (1) 式で表わされるプラントに対して、(4) 式
の評価関数のもと、最適な操作を求めるものを予見制
御。 (1) 式で表わされるプラントに対して、(29) 式の評
価関数のもと、最適な操作を求めるものを GPC と定
義する。

いま (1) 式はつぎのように状態方程式表現できる。

\[\dot{x}(k+1) = A \dot{x}(k) + Bu(k) + d(k) \quad (2a) \]

\[y(k) = C \dot{x}(k) \quad (2b) \]

ここで、\(\dot{x}(k) \) は \((n+m+L_m)\times 1 \) ベクトル、\(\dot{A} \) および

\[B, C \] は以下に示すような行列およびベクトルである。

\[\dot{A} = \begin{bmatrix} a \end{bmatrix} \quad \dot{B} = \begin{bmatrix} b \end{bmatrix} \]

\[d = \begin{bmatrix} d \end{bmatrix} \quad (3a) \]

\[y(k) = \begin{bmatrix} 1 \end{bmatrix} Cx(k) = Ca(k) \quad (3b) \]

ただし、\(L_m = 0 \) のときは \(B \) および \(\dot{B} \) は

\[\dot{B} = \begin{bmatrix} b \end{bmatrix} \]

となる。

(2) 式において \((\dot{A}, \dot{B}) \) は制御系であり、\((C, A) \) は可
検出となる。

ここで、差分算子 \(\Delta = 1-z^{-1} \) を導入するとときのよ
うな拡大系が構成される。このとき \(d(k) \) は零として扱
える。

\[\begin{bmatrix} y(k+1) \\ \Delta \dot{x}(k+1) \end{bmatrix} = \begin{bmatrix} 1 & \dot{C}A \\ 0 & \dot{A} \end{bmatrix} \begin{bmatrix} y(k) \\ \Delta \dot{x}(k) \end{bmatrix} + \begin{bmatrix} \dot{C}B \\ \dot{B} \end{bmatrix} \Delta u(k) \]

ただし、

\(L_m = 1 \) のとき \(\dot{C}B = 0 \)

\(L_m = 0 \) のとき \(\dot{C}B = b_0 \)

これを以下のように表わす。

\[x_0(k+1) = \dot{A}x_0(k) + \dot{B}u(k) \quad (3a) \]

また

\[y(k) = [1 \cdots 0] x_0(k) = Ca(k) \quad (3b) \]
(1) 式において $B(x^{-1})$ が $x=1$ に根をもたなければ、
(3) 式において (A, B) は可制御で、(C, A) は検出となる。以下では(3)式の系は可制御、可検出であるとする。

2.2 予見サーボ系構成

いま現在時刻を k とするとき、現れ先 N ステップ未来までの目標値信号が既知である場合を考え、つきのような評価関数 J を定義する。

$$J = [(R(k+N) - x_0(k+N))^T H (R(k+N) - x_0(k+N)] + \sum_{j=1}^{N-j} [(R(k+j) - x_0(k+j))^T C^T \hat{C} \times [R(k+j) - x_0(k+j)] + \rho \Delta u(k+j-1)^2]$$ (4)

ただし、$R(k+j)$ は目標値信号であり、

$$R(k+N) \triangleq [R(k+N) \ 0 \cdots 0]^T = \hat{C}^T R(k+N)$$

H：半正定対称行列

$
ho$：正実数

である。この評価関数と GPC の設計に使われる評価関数との大きな違いは右辺第 1 項の終端項が含まれていることである。

(4) 式の評価関数を最小にするような制御入力は最適性の原理を用いて以下のように求められる。評価関数の $[k+j, k+N]$ における最小値を $\min J_{k+j}$ とすると、最適性の原理を適用することによって次式を得る。

$$\min J_{k+j} = \min \{ [(R(k+j+1) - x_0(k+j+1)]^T \hat{C}^T \hat{C} (R(k+j+1) - x_0(k+j+1)) + \rho \Delta u(k+j)^2 + \min J_{k+j+1} \}$$ (5)

ここで $\min J_{k+j}$ をつぎのように仮定する。

$$\min J_{k+j} = \hat{x}_0(k+j) A(N-j) \hat{x}_0(k+j) + \Theta^T(N-j) \hat{x}_0(k+j) + \phi(N-j)$$ (6)

ここで、

$A(N-j) : (n+m+L_n) \times (n+m+L_n)$ 正定行列

$\Theta(N-j) : (n+m+L_n) \times 1$ ベクトル

$\phi(N-j)$：スカラー値

(6) 式を(5)式に代入して計算を進めると(6)式の仮定に矛盾はなく $\Delta u(k)$ の最適値は次式のように求められる。

$$\Delta u(k) = -D(N)B^T S(N-1) \hat{A} \hat{x}_0(k) + D(N)B^T \hat{C} \hat{x}_0(k+N)$$ (7)

ここで、

$$S(N-j) = A^T S(N-j+1) A$$

とし

$$-j+1) \hat{A} + \hat{C}^T \hat{C}$$

$$D(N-j) = (\rho + \hat{B}^T \hat{S}(N-j+1) \hat{B})^{-1}$$

$$\Theta^T(N-j) = (\Theta^T(N-j+1) - 2R(k+j+1) \hat{C}) \times (N-j+1)$$

$$\xi(N-j+1) = A - BD(N-j) \hat{B}^T S(N-j+1) \hat{A}$$

$(j = N-1, N-2, \cdots, 1)$ であり、境界条件は

$$S(0) = H + \hat{C} \hat{C}$$

$$D(1) = (\rho + \hat{B}^T \hat{S}(0) \hat{B})^{-1}$$

$$\Theta^T(0) = -2R(k+N) \hat{C} \hat{H}$$

となる。(10)式から $\Theta^T(N-1)$ を求め(7)式に代入すると(12)式のようになる。

$$\Delta u(k) = -D(N) \hat{B}^T S(N-1) \hat{A} \hat{x}_0(k) + D(N) \hat{B}^T \hat{C} \hat{C}, \xi^T(N-2) \hat{C} \hat{C}, \cdots,$$

$$\xi^T(N-2) \cdots \xi^T(0) [H + I \hat{C}^T \hat{C}] \hat{R}(k)$$

(12)

ただし、

$$\hat{R}(k) \triangleq [R(k+1), R(k+2), \cdots, R(k+N)]^T$$

(8) 式の Riccati 方程式は、(C, A) が可検出なので半正定一意解 P をもつ、重み行列 $H \to H = P - \hat{C} \hat{C}$ とすると、$S(i) = P(i=0, 1, \cdots, N-1)$, $D(i) = D(i=1, \cdots, N-1)$, $\xi(i) = \xi(i=0, 1, \cdots, N-2)$ と一定値となる。これらを(12)式に代入すると(13)式のようになる。

$$\Delta u(k) = -\hat{D} \hat{B} \hat{P} \hat{A} \hat{x}_0(k) + \hat{D} \hat{B} \hat{C} \hat{C}, \xi^T(N-2) \hat{C} \hat{C}, \cdots,$$

$$\xi^T(N-2) \cdots \xi^T(0) [H + I \hat{P} \hat{C}^T \hat{C}] \hat{R}(k)$$

(13)

(13) 式において

$$F_x = [f_x f_x \cdots f_x f_{x+n-1}] \hat{x}_0(k) + \hat{F}_R(k)$$

とおくと(14)式が得られる。

$$\Delta u(k) = F_x \hat{x}_0(k) + F_R(k)$$

$$= [f_x f_x \cdots f_x f_{x+n-1}] \hat{x}_0(k) + \hat{F}_R(k)$$

$$= (f_x + f_{x+n-1}) y(k) + \cdots$$

$$+ (f_x \cdots f_{x+n-1}) y(k-n+1) - f_x \cdots y(k) - f_x \cdots \Delta u(k-l) + \cdots + f_x \cdots \Delta u(k-l-n)$$

$$- \Delta u(k-l-m) + \hat{F}_R(k)$$

$$= F_x \hat{R}(k) + F_x \Delta u(k) + F_R(k)$$

(14)

$$\hat{u}(k) \triangleq [y(k), y(k-1), \cdots, y(k-n)]^T$$

$$\hat{u}(k) \triangleq [\Delta u(k-1), \Delta u(k-2), \cdots, \Delta u(k-l-n-m)]^T$$

(14) 式が ARMAX モデルから作成した状態空間モデルに対する予見サーボ系の制御入力となる。ここで以下のような変数を定義する。

$$M_x(z) \triangleq [z, z^2, \cdots, z^n]^T$$

$$M_x(z^{-1}) \triangleq [z^{-1}, z^{-2}, \cdots, z^{-n}]^T$$
$M_d(z^{-1})J \begin{bmatrix} z^{-1}, z^{-2}, \ldots, z^{-(L_m+m)} \end{bmatrix}$

これらの変数を用いて（14）式をブロック線図で表すと Fig.1 のようになる。

2.3 (4)式の評価関数の意義

（4）式の評価関数において終端項の重み $H = P - \tilde{C}^T \tilde{C}$ とすると，有限区間で定義される評価関数にもかかわらず，状態フィードバック係数行列 F_z が Riccati 方程式の半正定-不等式 P によって与えられ，常に安定な制御系が設計できる。

このようにすることによって評価関数の意義があいまいになるようにみえる。しかし，（3）式の拡大系に対して（4）式の評価関数を用いて得た（13）式の予見サーボ系の制御則は，無限区間で定義された評価関数

$$J_0=\sum_{i=1}^{k} \left(e(i) + \rho \Delta u^2(i) \right)$$ \hspace{1cm} (15)

利用する予見動作をもつ予見サーボ系の制御則と等価になることを示すことができる（付録参照）。\hspace{1cm} (15) 式の評価間数は，GPC の設計に用いられる評価関数の最大評価ホライズンを無限大にした形であり，その意義は明白である。

2.4 予見サーボ系の定常ロバスト性

Fig.1 の制御系の定常ロバスト性について説明を行う。

いま（14）式のフィードバック係数行列 F_x および予見フィードフォワード係数行列 F_y を

$$F_x = [f_{x1}, f_{x2}, \ldots, f_{xN}]$$

$$F_y = [f_{y0}, f_{y1}, \ldots, f_{yN}]$$

のように表し，γ を

$$\gamma = \sum_{i=1}^{k} f_{xi}$$ \hspace{1cm} (16)

と定義する。$k \geq l$ のときで目標値信号 $R(k)$ が定常 R^* になるものと仮定すると，$k \geq l$ で Fig.1 のブロック図は Fig.2 と等価となる。

ここで（8）式に対する定常 Riccati 方程式を ξ を利用して表現すると

$$P P \begin{bmatrix} A & 1 \end{bmatrix} = \begin{bmatrix} 0_{n+m+l} \end{bmatrix}$$ \hspace{1cm} (17)

が得られる。両辺に P を加え，$\begin{bmatrix} I & -\xi^T \end{bmatrix}$ を正則として整理すると

$$PA = \begin{bmatrix} I & -\xi^T \end{bmatrix} P \begin{bmatrix} A & 1 \end{bmatrix} + \begin{bmatrix} 0_{n+m+l} \end{bmatrix}$$ \hspace{1cm} (18)

となる。ここで A, \tilde{C} の定義式をつぎのように表現する。

$$A=[C^T A_1], \tilde{C}=[\begin{bmatrix} I & 0_{n+m+l} \end{bmatrix}]$$ \hspace{1cm} (19)

ただし，

$$A_1 \triangleq \begin{bmatrix} \tilde{C} & A \end{bmatrix}, 0_{n+m+l} : 1 \times (n+m+L_m)$$

零ベクトル

（19）式の表現を用いると（18）式は

$$P \tilde{C} = (I-\xi^T)^{-1} [P A_1] + (I-\xi^T)^{-1} \begin{bmatrix} 0_{n+m+l} \end{bmatrix}$$ \hspace{1cm} (20)

となる。この第 1 項目等の等式から

$$P \tilde{C} = (I-\xi^T)^{-1} \begin{bmatrix} 0_{n+m+l} \end{bmatrix}$$ \hspace{1cm} (21)

が成り立つ。\hspace{1cm} (16)式の γ は

$$\gamma = DB^T \begin{bmatrix} I & \xi^T & \ldots & \xi^{N-1} \end{bmatrix} P \tilde{C} = DB^T (I-(\xi^T)^N) (I-\xi^T)^{-1} \tilde{C}$$

$$= DB^T \begin{bmatrix} 0_{n+m+l} \end{bmatrix}$$ \hspace{1cm} (22)

となる。\hspace{1cm} (21) 式の関係を用いると

$$\gamma = DB^T (I-\xi^T)^{-1} \tilde{C}$$

$$= DB^T \tilde{C}$$ \hspace{1cm} (23)

となる。一方，

$$\begin{bmatrix} F_y M_x(z^{-1}) \end{bmatrix}_{k=1} = \sum_{i=1}^{k} f_{yi}$$

$$= f_{y0}$$

$$= -DB^T P A \tilde{C}$$

$$= -DB^T P \tilde{C}$$ \hspace{1cm} (24)

が得られる。ゆえに，（23），（24）式から，$y = -\begin{bmatrix} F_y M_x(z^{-1}) \end{bmatrix}_{k=1}$ となるので，$k \rightarrow \infty$ で Fig.2 の制御系は直結フィードバックとなり，内部モデルの原理を満足する。したがって，Fig.1 の制御系は全系の安定性が担保される。Fig.2 のブロック図は目標信号の変動およびステップ状のブレーキ出力に対しても定常偏差は残らず，定常ロバストであることがわかる。

なお（4）式の評価関数において N を無限大とすると（13）式の予見フィードフォワード係数行列は

$$DB^T \begin{bmatrix} \tilde{C} \end{bmatrix}, \tilde{C}^T, (\xi^T)^T \begin{bmatrix} \tilde{C} \end{bmatrix}, \ldots$$ \hspace{1cm} (25)

となる。ここで $k+N+1$ ステップ以降の目標値信号をすべて $R(k+N)$ に等しいとして，$R(k+j)(j \geq N)$ が定
値 R^* のときの予見フィードフォワード項は
\[
DB^T(C^T R(k+1) + \xi C^T R(k+2) \\
+ \cdots + (\xi)^{N-2} C^T R(k+N-1) \\
+ (\xi)^{N-1} + (\xi)^N + \cdots + (\xi)^R R^*)
\] (26)
となる。21) 式の関係を用いると
\[
((\xi)^{N-1} + (\xi)^N + \cdots + (\xi)^R R^*)
\] (27)
が成り立つので(25)式は
\[
DB^T[C^T, \xi C^T, (\xi)^2 C^T, \cdots, (\xi)^{N-2} P C^T] \mathbf{R}(k)
\] (28)
となり、(13)式の予見フィードフォワード項に一致する。
すなわち、本章で導出した (k+1) から (k+N) ステップまでの未来目標値信号を利用した予見サーボ系は (k + N+1) ステップ以降の目標値信号をすべて $R(k+N)$ と同じ値とみなしていることが関係する。

3. 最適性の原理を用いる GPC の設計
ここでは2章の結果を利用して、最適性の原理を用いたGPCシステムの説明を行う。これはClarkeらが提案している手法とは異なった手法により、GPCシステムの設計を行うものである。

GPCシステムにおいて用いられている評価関数 J_S は(29)式のようなものである。
\[
J_S = \sum_{j=1}^{N} (R(k+j) - y(k+j))^2 \\
+ \sum_{j=1}^{N} \rho u(k+j-1)^2
\] (29)
ここで N は最大評価ホライズン、N_i は最小評価ホライズンそして NU は制御ホライズンと呼ばれている。このとき、$j \geq NU+1$ で $\Delta u(k+j-1)=0$ と仮定される。(11)式で表された制御対象に対して(29)式の評価関数のものと最適な操作量を求めるものがGPCである。ここでは、$N=NU$ の場合、その場合の設計法を2章の結果を用いて述べる。

[1] $N=NU$ のとき
(27)式の評価関数は
\[
J_S = \sum_{j=1}^{N} [(R(k+j) - y(k+j))^2 + \rho u(k+j-1)^2] \\
= F_x x_0(k) + F_R \mathbf{R}(k)
\] (31)
ここで $D(N), S(N-1), (\xi(N-2), \cdots, (\xi)(0))$ は、(8)式〜(11)式で
\[
S(0) = C^T C \\
D(1) = [\rho + B^T S(0) B]^{-1} \\
\theta^*(0) = 0
\]
の境界条件のもとで解いて得られる。

[2] $N \neq NU$ のとき
一般に $NU < N$ であり、$j \geq NU+1$ で $\Delta u(k+j-1)=0$ を強制することになるので、(29)式の評価関数は
\[
J_S = \sum_{j=1}^{NU} [(R(k+j) - y(k+j))^2 \\
+ \rho u(k+j-1)^2] \\
+ \sum_{j=NU+1}^{N} [(R(k+j) - y(k+j))^2 \\
+ \varepsilon u(k+j-1)^2] \\
\] (32)
で、$\varepsilon \to \infty$ となる。このときの制御入力は(31)式と同じであるが、$D(N-j)$ とその境界条件は
1) $N-1 \geq j \geq NU$ のとき
\[
D(N-j) = [\varepsilon + B^T S(N-j+1) B]^{-1}
\]
境界条件 $D(1) = [\rho + B^T S(0) B]^{-1}
2) NU-1 \geq j \geq 0$ のとき
\[
D(N-j) = [\rho + B^T S(N-j+1) B]^{-1}
\]
境界条件 $D(N-NU+1) = [\rho + B^T S(N-NU) B]^{-1}$
となる。

つきに、ここで求めたGPCの設計結果とClarkeらの手法によるGPCの設計結果が一致することを簡単な例題で示しておく。

[例題]
いま、プラントとして
\[
(1+a_1 z^{-1}+a_2 z^{-2}) y(k)=(b_0+b_1 z^{-1}) u(k-1)
\]
とする。ここで $N=NU=2$ としてフィードバック係數行列 F_x、予見フィードフォワード係數行列 F_R を求める。

A) Clarkeらの手法によるGPCの設計
制御入力は
\[
\Delta u(k) = [1 0] (G^T G + \rho I)^{-1} G^T (R(k) - f) \\
= F_x \mathbf{R}(k) + f_{x_0} y(k) + f_{x_1} y(k-1) \\
+ f_{x_2} y(k-2) + f_{x_3} \Delta u(k-1)
\]
となる。ここで、f はDiophantine方程式を解いて得られる現在から過去の y と過去の u に依存する項であり、
G はプラントのindicial応答係数 g_0, g_1 で構成される行列
\[
G = \begin{bmatrix} g_0 & 0 \\ 0 & g_1 \\ \end{bmatrix}
\]
である。g_0, g_1 は(33)式を使って求めると
\(g_0 = b_0\)
\(g_1 = b_1 + (1-a_1)b_0\)

となります。予見フィードフォワード係数行列 \(F_x\) は
\[
F_x = [10](G^TG + \rho I)^{-1}G^T
\]
\[
= \begin{bmatrix}
(\rho + \rho^2 b_0 b_1) & \rho (b_1 + (1-a_1)b_0) \\
\rho^2 + (\rho + \rho^2 b_0 b_1) & \rho^2 (\rho + \rho^2 b_0 b_1)
\end{bmatrix}
\]
と求まる。

\(d \triangleq 3b_0 + 2b_1 + b_0 - a_1b_0 (2b_0 + 2b_1 - a_1 b_0)\)

となる。またフィードバック係数行列 \(F_z = [f_{00} f_{01} f_{02} f_{03}]\) は、文献 2 の Diophantine 方程式の recursion の手法に従って

\[
f_{00} = \left[(\rho + b_0) b(a_1 - 1) + \rho (b_1 + (1-a_1)b_0)(a_1 + 1 - a_1 b_0) \right] /(\rho + b_0)
\]

\[
f_{01} = \left[(\rho + b_0) b(a_2 - a_1) + \rho (b_1 + (1-a_1)b_0)a_1(a_1 - a_2) \right] /(\rho + b_0)
\]

\[
f_{02} = \left[(\rho + b_0) b a_2 + \rho (b_1 + (1-a_1)b_0)a_1(1-a_1) \right] /(\rho + b_0)
\]

\[
f_{03} = \left[(\rho + b_0) b_0 s_3 + \rho (b_1 + (1-a_1)b_0)(1-a_1)b_0 \right] /(\rho + b_0)
\]

としたが予見フィードフォワード係数行列 \(F_x\) は
\[
F_x = D(2)B^TS(1)B^{-1}
\]
\[
D(2) = \begin{bmatrix}
\rho + b_0^2 & -a_1 & -a_2 & b_1 \\
-a_1 & a_1^2 & a_1 a_2 & -a_1 b_1 \\
-a_2 & a_1 a_2 & a_1^2 & -a_1 b_1 \\
b_1 & -a_1 b_1 & -a_2 b_1 & b_1^2
\end{bmatrix}
\]

となり、フィードバック係数行列 \(F_z\) は
\[
F_z = -D(2)B^TS(1)A
\]
\[
A = \begin{bmatrix}
-1 & a_1 & a_2 & b_1 \\
0 & -1 & a_2 & b_1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

とならない。

4. 予見サーボ系の特徴

2 章で提案した予見サーボ系は、Riccati 方程式の定常解を用いてフィードバック係数行列および予見フィードフォワード係数行列を設計しているためつきのような特徴がある。

[a] GPC では、\(N\) および \(N\) の選択によって、(31) 式のフィードバック係数行列 \(F_z\)、予見フィードフォワード係数行列 \(F_x\) が複雑に変化するが、予見サーボ系では (13) 式の \(F_z\) が \(N\) に依存しないので、フィードバック特性は評価関数の重み \(\rho\) のみによって決まる。目標値応答予見フィードフォワード効果のみが \(N\) に依存し \(N\) は予見ステップ数とみなされる。

[b] 予見サーボ系では \(\xi\) は常に安定行列となり、\(\xi^{N+1} \to \sigma(N \to \infty)\) となる。\(R(k+N)\) の予見フィードフォワード係数は \((\xi^{N})^{N+1}\) に比例するので、\(N \to \infty\) で漸近的に零になる。また評価関数の重み \(\rho\) が小さくなれば \(\xi\) の固有値も小さくなるので、\(N\) は小さくても、その整合は \(\xi\) の固有値の大きさに依存する。これに対して GPC システムでは、\(N\) は制御系のフィードバック特性にも関係してくるので、予見サーボ系の場合のように制御系との明確な関係は述べられず、\(N\) は \(N \geq 2(n+L)-1\) とし、実際にはプラントの立ち上がり時間にとるといわれている。
予見サーボ系では N に関係なく制御系は常に安定となり、制御系の $\rho \to 0$ で漸近特性も求められている。

ただし、$N=NU$ で、これらが大きくなると GPC のフィードバック特性は予見サーボ系のものに漸近する。これは(4)式の評価関数 J_e を用いて計算されたフィードバック係数行列 F_u（あるいは F_z、F_r）は、2.3 より

\[
J_e = \sum_{k=0}^{\infty} \left((R(k+j) - \theta(k+j))^\top \hat{C} \hat{C} \right)
\times (R(k+j) - \theta(k+j) + \rho \Delta u(k+j-1))
\]

(33)

を用いて設計されたものと同じになるが、(29)式的評価関数 J_e で $N \to \infty$ すると J_e に漸近することから明らかとなる。

[d] GPC システムはプラントのパラメータとステップ応答係数を用いて制御系が設計できる。またパラメータをオンラインで定めたセルフチューニング制御に適している。一方、予見サーボ系の場合、セルフチューニング制御を行う場合には GPC システムに比べてある程度計算時間がかかると予想される。

6. 予見サーボ系のシミュレーション

2 章で提案した ARMAX モデルに対する予見サーボ系を DC モータ速度制御へ適用したシミュレーション結果を示す。用いた DC モータの定格値は 1.5 kW、100 V、18.5 A、1500 rpm であり、サンプリング周期は 10 ms となっている。このシステムの ARMAX モデルは(31)式と同様である。

\[
(1+a_1 z^{-1} + a_2 z^{-2}) y(k) = (b_0 + b_1 z^{-1}) u(k-1) + d(k)
\]

となる。ただし、$y(k) = \omega_r(k)$（回転速度）、$u(k) = v_a(k)$（電機子電圧）である。またこのシステムのパラメータ値は以下のようである。

\[
a_1 = -1.55 \quad a_2 = 5.73 \times 10^{-1} \\
b_0 = 3.59 \times 10^{-3} \quad b_1 = 2.98 \times 10^{-3}
\]

Fig. 3 にこのシミュレーション結果を示す。ここでは $\rho = 10.0$ とし、$d(k)=0$ としている。また電機子電流 $i_a(k)$ の応答も参考までに示している。(a)，(b)，(c) はそれぞれ $N=2$，$N=20$，$N=40$ の場合のステップ状目標値変化に対する応答を示したものである。N を大きくするにつれて、目標値の先だって回転速度 $y(k)$ が変化し、入力 $u(k)$ が若干小さくなったことがわかる。また $R(k+40)$ に対する予見フィードフォワード係数は $R(k+1)$ の係数の 17%程度となってしまっており、N をこれ以上大きくしても応答はほとんど変わらないものとなっている。

7. あとがき

CARIMA モデルに対する予見サーボ系の設計法を提案した。この予見サーボ系は常に安定な制御系となる特徴をもっている。ここで提案した予見サーボ系の設計法は、ランプ状目標値の存在場合や多入力系の場合にも容易に拡張できるものである。

つぎに最適性の原理を用いて GPC システムが設計できることも示した。これによって、制御ホイズン NU と制御系の性質との関係を考察できると考えられるが、これは今後の課題としたい。
江上・土谷：予見サーボ系の設計と一般化予測制御（GPC）系について

また本論文では \(d(k) = q(k)/\bar{d} \) としたが文献 3), 4) の\(d(k) = C(x^*)x(k)/\bar{d} \) で表されているときの設計法についても今後の課題としたい。さらに MAC、DMC アルゴリズムと予見サーボ系の関係を明らかにするようや、オートチューニングに適した予見サーボ系のアルゴリズムの開発なども興味のある問題と思われる。

参考文献
1) 西谷泰一：モデル予測制御の応用，計測と制御，28–11 (1989)
5) 土谷・江上：多入力多出力予見制御系設計法，計測自動制御学会論文集，22–8 (1986)
7) 江上・品田・土谷：予見フィードフォワード補償を含む部分状態フィードフォワード制御系構成法，計測自動制御学会論文集，23–12 (1987)

付録

本予見サーボ系の制御則が文書 6) の予見サーボ系の制御則と等価になることの証明。

文献 6) の設計法では，\(N \) 時点未来までの目標値が予見できるものとし，\(R(k) = 0(k = 0, -1, \ldots) \) の関係が成立する。（13）式に用いて，\(G_s = G_a / \bar{d} \) となり，予見フィードフォワード係数行列も一致する。

\[
G_s = DB^T[P \bar{C}^T, (\xi^*)P \bar{C}^T, \ldots, (\xi^*)^{N-1}P \bar{C}^T]
\]

（A 4）

となる。（13）式（A 3）式より，\(F_s = G_s \) となりフィードバック係数行列一致する。一方，（A 1）式の予見制御部を \(\Delta u_r(k) \) とすると（A 4）式から

\[
\Delta u_r(k) = G_a \bar{d} \bar{R}(k)
\]

\[
= -DB^T[P \bar{C}^T \bar{R}(k) + DB^T](I - \xi^*)P \bar{C}^T, (\xi^*)P \bar{C}^T, \ldots, (\xi^*)^{N-1}P \bar{C}^T]
\]

（A 5）

となる。ここで（21）式から

\[
(I - \xi^*)P \bar{C}^T = \tilde{C}
\]

（A 6）

の関係が成り立ち，\(R(k) = 0 \) の仮定と（A 6）式を用いて，（13）式を比較すると，\(F_0 = G_a / \bar{d} \) となり，予見フィードフォワード係数行列も一致する。

著者紹介

江 上 正（正会員）

1982 年，北海道大学工学部電気工学科卒業。66 年同大学院工学研究科博士課程修了。同年神奈川大学工学部機械工学科専任講師。90 年同助教授。現在に至る。ディジタル制御理論とその応用に関する研究に従事（工学博士）。

土 谷 武 士（正会員）

1963 年，北海道大学工学部電気工学科卒業。65 年同大学院工学研究科修士課程修了。その後北海道大学工学部講師。助教授を経て現任助教授、制御工学、ロボット工学、パワーレールトロニクスなどの研究に従事（工学博士）。

愛 田 一 雄（正会員）

1961 年，金沢大学工学部機械工学科卒業。栃木バイオ学工業を経て 65 年新潟大学工学部精密工学科助手、現在機械システム工学科助教授、制御系の設計法に関する研究に従事。74 年計測自動制御学会論文賞受賞（工学博士）。

北 森 俊 行（正会員）

(Vol. 28, No. 4 参照)