Realization Theory of Discrete-Time Almost-Linear Systems

Yasumichi HASEGAWA* and Tsuyoshi MATSUO**

In this paper the discrete-time system is treated. And it is discussed the realization problem of almost-linear systems to be the special sub-class of pseudo-linear systems. Almost-linear systems are the pseudo-linear systems whose state transition equation are represented as the sum of free motion and linear action by input, where the one of pseudo-linear systems are represented as sum of free-motion and non-linear action by input.

The established realization theorem of pseudo-linear systems being based on, the realization problem of almost-linear systems is discussed.

Generally speaking, the realization problem is stated as follows. Let I/O be the set of input/output map to be a black-box and CD be the category of dynamical systems which have the same behavior as the given black-box, it is intended to obtain the following realization theorem. Realization theorem: For any given input/output map \(\sigma \in I/O \), there exist at least one dynamical systems \(\sigma \in CD \) which have the behavior \(\sigma \). Let any \(\sigma_1, \sigma_2 \in CD \) have the same behavior, then \(\sigma_1 \) is isomorphic to \(\sigma_2 \) in sense of category CD.

In this paper, let I/O be the set of any input/output map with causality, time-invariance and affinity (this map is called a time-invariant, affine input-response map) and let CD be the category of canonical almost-linear systems, then the realization theorem of almost-linear systems is obtained.

Modified impulse response being introduced, it is shown that any time-invariant, affine input-response map can be characterized by it. “So-called” linear systems can be given as specific examples of almost-linear systems. Where “so-called” linear systems mean linear systems with a non-zero initial state.

Key Words: realization theory, almost-linear systems, non-linear systems, pseudo-linear systems, discrete-time systems

1. はじめに

本論文では離散時間系を取り扱い、擬線形系の特殊なサブクラスである擬線形系の実現問題を論じる。擬線形系の具体例として“いわゆる”線形系（初期状態が零でない線形系）がある。文献1)において、離散時間・擬線形系の実現理論が確立された。本文では、その実現理論を基にして擬線形系の実現問題を取り扱う。一般に、実現問題はつぎのように述べることができる。あるブラック・ボックスの入出力関係となり得る入出力写像の集合をI/Oとし、ブラック・ボックスの内部を記述するモデルの候補として考える力学系の圏をCDとする。そこで、つぎの実現定理を得ることを目的とする。実現定理：「任意の入出力写像 \(\alpha \in I/O \) に対し、その挙動が \(\alpha \) となる力学系 \(\Sigma \in CD \)（すなわち、\(\alpha \) を実現する力学系 \(\Sigma \)）が少なくとも一つあり（存在部分）。\(\alpha \) の二つの実現系 \(\Sigma_1 \) と \(\Sigma_2 \) とは圏CDにおいて同形である（一意部分）」。

擬線形系の実現問題がつぎのように扱われた。I/Oとして、因果律および時変性を満たす任意の入出力写像（このことは任意の時不変入力応答関数を取り扱うことと同等である）の集合を考え、CDとして正準な擬線形系の圏を考えて擬線形系の実現定理が得られた。

TR 0002/94/3002-0150 © 1992 SICE
2. 出入力関係

本章では本文で取り扱う出入力関係について考察する。詳細に関しては、文献2, 3を参照されたい。

Uを入力信号値U (x)が入力する値の集合とし、Uをアルファベットとするワード (語)の集合Uを入力系列の集合とする。入力ω=ω(n)の(n-1)となる入力|ω|をNと定義する。ただし、ω∈N。ここで連続の演算ωをω, ω∈Uに対しω|ω|とし、ω|ω|は入力ωを与えた後すぐに入力ω|ω|を与えることを表わす。空な入力系列を1とし|ω|=0とする。

出力信号値Yは、実数空間とする。そのとき、プルック・ボックスの出入力関係としてつぎの事実がある。時不変性：

\[\alpha(ω)-\alpha(ω) = \alpha(ω[n]-\alpha(ω) \]

ただし、任意のω, ω∈U, |ω|=|ω|。

本論文で考察対象とする出力関係をつぎの定義

(2.1)まとむとき不変出力応答関数とする。

本章の定義においては、入力値集合Uを入力でとして

標準化するが、記号の簡単化のためにも手あり。すなわち、

1入力系U=Hとする。そこで、u∈U、t∈Nに対し、

u×u×Uをu(i)=u(ただし、0≤i≤1)と定義する。

U(p)=|ω|:p∈N とするとき、U(p)を入力系列の集合であり、入力系列の単位元を0とする。

(2.1)定義

時不変応答関数α∈F(U, Y)がアファイン写像

\[\alpha: U→Y \]

すなわち

\[\alpha(ω+ω) + \alpha(ω+ω) = \alpha(ω)+\alpha(ω) \]

\[\alpha(ω)=\alpha(ω)+(1-\omega)(ω(ω)) \]

ただし、任意のω, ω∈U(p), p∈N, ω∈H。

を満たすとき、αは時不変・アファイン入力応答関数といわれる。

(2.2)補題

α∈F(U, Y)が時変・アファイン入力応答関数とす

るとき、任意の入力ω∈Uに対する応答α(ω)は次式により表わされる。

\[\alpha(ω)=\alpha(ω)+\sum_{j}ω(ω)(ω(ω)) \]

\[\alpha(ω)=\alpha(ω)+\sum_{j}ω(ω)(ω(ω)) \]

ただし、ω=|ω|であり、ω=0, 0=0, 1=0である。

(証明) 入力応答関数α∈F(U, Y)が時不変性を満たし、アファイン写像であることを用いれば容易に得られる。

(証明終了)

(2.3)定義

時不変・アファイン入力応答関数α∈F(U, Y)に対

し関数GL: {0, 1}→F(N, Y): u→GL(ω): t→

\[\alpha(ω)ω(ω) \]をαの補正インパルス応答 (modified impulse response)という。

(2.4)命题

任意の時不変・アファイン入力応答関数α∈F(U, Y)に対し

\[\alpha(ω)=\alpha(1)+\sum_{j}ω(ω)(GL(0)(ω(ω))) \]

\[\alpha(ω)=\alpha(1)+\sum_{j}ω(ω)(GL(0)(ω(ω))) \]

が成り立つ。

ただし、ω=|ω|であり、ω=0, 0=0, 1=0である。

(証明) 補題(2.2)と定義(2.3)により得られる。

(証明終了)
3. 概型系の実現定理

この章では概型系を定義し、時不変・アファイン入力応答関数の概型系による実現定理を述べる。その実現定理は存在と定義の部分からなる。

(3.1) 定義
次式で表われるシステムを概型系という、概型系
$$\sigma = ((X, F), g(0), \bar{g}, h, h^0)$$ と書く。

$$x(t + 1) = Fx(t) + g(0(t)) + \bar{g} \cdot o(t + 1)$$
$$x(0) = 0$$
$$y(t) = h^0 + h x(t)$$

ただし、$$X$$ は体 $$h$$ 上の線形空間であり、$$F \in L(X), g(0)$$ および $$\bar{g} \in X$$ である。更に $$h$$ は線形写像 $$h : X \to Y$$ であり、$$h^0 \in Y$$ である。

対 $$(X, F)$$ を自由運動という。

概型系

$$\sigma = ((X, F), g(0), \bar{g}, h, h^0)$$ に対し関数 $$a_{\sigma} :$$

$$U^* \to Y; \omega \mapsto a_{\sigma}(\omega) = h^0 + h \left(\sum_{j=1}^{n} F^{j-1} \cdot (\bar{g} \cdot o(j) + g(0)) \right)$$

をその挙動（behavior）という。

関数 $$G_{\sigma} : [0, 1] \to F(N, Y); u \mapsto (G_{\sigma}(u))(t) = h^0 + h \left(F^{j-1} \cdot (\bar{g} \cdot u + g(0)) \right)$$ 規型系 $$\sigma$$ の補正インパルス応答と呼ばれる。

(3.2) 命題

$$\sigma = ((X, F), g(0), \bar{g}, h, h^0)$$ 概型系とする。そのとき、挙動 $$a_{\sigma}$$ に対し $$(G_{\sigma}(u))(t) = a_{\sigma}(u^t) - a_{\sigma}(u^{t-1}), u \in [0, 1], t \in N$$ により補正インパルス応答が対応し、この対応は全単射である。

(証明) 概型系の挙動および補正インパルス応答の定義に注目することにより得られる。

(証明終)

(3.3) 定義

時不変・アファイン入力応答関数 $$\sigma \in F(U^*, Y)$$ に対し、$$a_{\sigma} \in a$$ となる概型系 $$\sigma$$ は $$a$$ を実現するといわれる。

$$\sigma = ((X, F), g(0), \bar{g}, h, h^0)$$ 概型系とする、可到達集合 $$\{ \sum F^{j-1} \cdot (g(0) + \bar{g} \cdot o(j)) : \omega \in U^* \}$$ の線形包がX に一致するとき、$$\sigma$$ を実現可能であるという。任意の $$m \in N$$ に対し $$h^{F^m} \cdot x = h^{F^m} \cdot x$$ ならば、$$x = x_m$$ が成立つとき、$$\sigma$$ を可観測であるという。実現可能であり、可観測である $$\sigma$$ は準正であるといわれる。

(3.4) 概型系の例

$$A(N \times (0, 1), h) : \{ \text{関数 } \lambda : \lambda \in \sum \lambda(x, u) \in L(X, F) \}$$

$$\lambda = \sum \lambda(x, u) e(u, v)$$ 有限個のと、$$u = 0$$ または 1 である。

(3.5) 概型系の例

$$F(N, Y) : \{ \text{関数 } \sigma : \sigma \in F(U^*, Y) \}$$

$$\sigma \in F(U^*, Y)$$ に対し線形写像 $$\sigma : A(N \times (0, 1), h) \to Y \mapsto g(e(u, v)) = (a(u^{t+1}) - a(u^t))$$ と定義する。

(3.6) 存在定理

任意の時不変・アファイン入力応答関数 $$\sigma \in F(U^*, Y)$$ に対し、$$\tilde{\sigma}$$ の二つはそれぞれ $$\alpha$$ を実現する正準概型系である。

1) $$(A(N \times (0, 1), h) / \approx) \in [\gamma]$$

$$\tilde{\sigma} \in [\tilde{\gamma}]$$

$$\tilde{\sigma} \in L([\gamma], A(N \times (0, 1), h))$$

2) $$(\{S_{\gamma, \tilde{\gamma}}(U^*), S_{\gamma, \tilde{\gamma}}, \tilde{\gamma}, 0, a(1))$$

ただし、$$A(N \times (0, 1), h) / \approx$$ は $$\tilde{\sigma}$$ の同値関係により得られる構成空間である。

同値関係

$$\lambda_1 \sim \lambda_2 \iff \sum_{m \in N} \lambda_1(m, u)(e(u, v) - e(u, v)) \in A(N$$

$$\lambda_2 \sim \lambda_3 \iff \sum_{n \in N} \lambda_3(n, v)(e(u, v) - e(u, v))$$

$$\lambda_1 \sim \lambda_2 \iff \sum_{m \in N} \lambda_2(m, u)(e(u, v) - e(u, v)) \in A(N$$

$$\lambda_2 \sim \lambda_3$$

$$\lambda_3 \sim \lambda_4$$
×(0, 1), h) であり、任意の \(a \in U^*, \omega_1 \in U^*(m), \omega_2 \in U^*(n)\) である。
\(\hat{S}, \tilde{S}, \odot, \odot\) は線形写像 \(\hat{S}, \tilde{S} : A(N \times [0, 1], h) \equiv_a A(N \times [0, 1], h), \odot = \odot[S, \odot]\) である。ただし、\(\odot, \odot[A(N \times [0, 1], h)\) である。

\(\odot\) は線形写像 \(\odot : A(N \times [0, 1], h) / \equiv_a A(N \times [0, 1], h) \equiv_a [\odot(a(x, u))] = a(u + a), x_1, u_1 \in A(N \times [0, 1], h)\) である。

\(\hat{S}, \tilde{S}, \odot\) を集合 \(\hat{S} : A(N \times [0, 1], h) / \equiv_a [\hat{S}, \odot], x_1, u_1 \in A(N \times [0, 1], h)\) である。

| (証明) \(\odot\) を実現する線形写像 \(\odot\) は線形写像 \(\odot\) の例 (3.4), (3.5) により与えられた、しかしながらこれらは正準形ではない、正準形を求めるために、付録 C において線形形が同等的に洗練された線形形に変換する、そこで線形形の存在定理 (本定理) の証明を行う、特に、付録の定理 (C.15) の注意を参照、(証明終了)

(3.7) 定義

\(\hat{a} = ((X_1, F_1), g(0), \tilde{g}_1, h_1, h_1'), \hat{a} = ((X_1, F_1), g(0), \tilde{g}_1, h_1, h_1')\) を線形寫像、

線形写像 \(T : X_1 \rightarrow X_2\) が \(TF_1 = F_1, Tg_1 = 0\) であるとき、

(3.8) 概線形系の実現定理

任意の時変・アフィン入力応答関数 \(a \in F(U^*, Y)\) に対し、それを実現する、少なくとも二つの正準線形系が存在する (存在部分)。

\(\odot\) を同じ集合をもつ、正準線形系とする、そのとき、同形写像 \(T \circ \tilde{a} \circ \odot\) が存在する (一意部分)。

(証明) この概線形系の実現定理の存在部分は存在定理 (3.6) と一致のため、実現定理の一部は概線形系の等値形の特殊な系であることを (定理 (B.2), 補題 (B.3) の注意 1 参照)、線形写像、線形形系の定義 (3.7), (証明) (A.4) および線形形系の実現定理 (A.5) から得られる。

(証明終了)

存在定理 (3.6) および定理 (3.8) の直線の結果としてつぎの系が得られる。

(3.9) 系

時変・アフィン入力応答関数 \(a \in F(U^*, Y)\) に対し等しい条件で同等である。

4. 概線形系と“いわゆる”線形系との関係

本章において、“いわゆる”線形系が概線形系となることを示す。したがって、“いわゆる”線形系は概線形系の具体例となる。ここで、“いわゆる”線形系とは次のような初期状態をもつ線形系のことである。

(4.1) 補題

\[
\begin{align*}
|\bar{z}(t+1)\rangle &= A|\bar{z}(t+1)\rangle + b\bar{z}(t) \\
|\bar{z}(0)\rangle &= x_0 \\
|\bar{z}(t)\rangle &= CG(t) + da(t)
\end{align*}
\]

(証明) 本章において、“いわゆる”線形系が概線形系となることを示す。したがって、“いわゆる”線形系は概線形系の具体例となる。ここで、“いわゆる”線形系とは次のような初期状態をもつ線形系のことである。

(4.2) 命題

次の系が実現される任意の“いわゆる”線形系に対し、それと同じ入力関係をもつ線形形系 \(\sigma = ((X, F), g(0), \tilde{g}, h, h')\) が得られる。

ただし、\(\tilde{g}(0) = \tilde{F}x_0 - x_0, h = h_0\) である。

(証明) 上式で表される“いわゆる”線形系において \(|\bar{z}(t)\rangle = |\bar{z}(t)\rangle + x_0\rangle とすれば次式が得られる、

\[
\begin{align*}
|\bar{z}(t+1)\rangle &= F|\bar{z}(t)\rangle + \tilde{g} \cdot \omega(t+1) \\
|\bar{z}(0)\rangle &= x_0 \\
|\bar{z}(t)\rangle &= hz(t), t \in N, |\bar{z}(t)\rangle \in X.
\end{align*}
\]

(証明終了)

(注意) 命題 (4.1) の“いわゆる”線形系において、任意の“いわゆる”線形系に対して、実現可能 (可制御である、可観測である) は任意に保存されることに注目されたい。
（4.3） 命題
\[\sigma = ((X, F), g(0'), g, h, h_0) \] を可観測な線形系とする。
\(\sigma \) がつぎのシステム方程式で与えられるための必要十分条件は \(x^0 \in X \) が存在して \([F - I]x^0 = g(0') \) と表わされる事であることである。

\[
\begin{align*}
\dot{x}(t+1) &= Fx(t) + g \cdot a(t+1) \\
x(0) &= x^0 \\
y(t) &= h^0 - hx^0 + hx(t)
\end{align*}
\]
（証明） 順に、十分性を示す。\(g(0') = [F - I]x^0, x(t) = x(t) + x^0 \) とする線形系のシステム方程式から本命題のシステム方程式が得られる。つぎに、必要性を示す。\(\sigma = ((X, F), g(0'), g, h, h_0) \) のシステム方程式と本命題のシステム方程式との出力関係が同じである。そこで、線形系 \(\sigma \) が可観測であることを用いれば、条件式が得られる。（証明終）

（注意1） 線形系 \(\sigma \) が命題(4.3)の条件を満たすとする。そのとき、\(\sigma \) は“いわゆる”線形系であることに注目される。すなわち、線形系が“いわゆる”線形系となる条件が命題(4.3)である。

（注意2） 一般に線形系がインフルエンス応答により特徴づけられることは知られている。命題(3.2)により線形系が補正インフルエンス応答により特徴づけられるかわからない。したがって、この条件を命題(4.2)から任意の“いわゆる”線形系が補正インフルエンス応答により完全に特徴づけられることがわかる。

（4.4） 補題
時不変・アファイン入力応答関数 \(a \in F(U^*, Y) \) に対し，\(S: a^d(m) = a(0^* a^d) \), \(a^d(m) = a(0^*) \), \(m \in \mathbb{N} \) となる
\(a^d \in F(N, Y) \) が存在するとき，線形系 \(\sigma = ((F, N, Y), S), x, x^0, 0, a(t)) \) は命題(4.3)の条件を満たす。
（証明） 条件を満たす \(a^d \in F(N, Y) \) が与えられたとき \([(S - I) a^d] \) を満足する。したがって，命題(4.3)の条件を満たす。（証明終）

5. おわりに
以上，考察対象として任意の時不変・アファイン入力応答関数を扱い，それぞれの線形系による実現問題を論じつつ，その結果を得た。任意の時不変・アファイン入力応答関数が補正インフルエンス応答により記述できることを示した。任意の時不変・アファイン入力応答関数に対し，それを実現する正準線形系が必ず存在し（存在部分）正準実現系は一意（同型を除いて）であること（一意部分）を示した。
実現の存在部分で提案された正準系（定理(3.6)の1）部分正準系（定理(3.6)の2）は新しい。ゆえに，存在部分・一意部分が線形系として，したがって線形系よりも強い意味で成立することを示した。

線形系のクラスには命題(4.2)，命題(4.3)で示したように“いわゆる”線形系（初期状態が零でない線形系）があることを示した。従来の“いわゆる”線形系理論においては，線形系の実現問題用と未知の状態を既知にしようとする線形系の状態推定問題との二つの問題に分けられている。本論文の線形系の実現理論により，それらは一つの線形系の実現問題として取り扱うことができ，有限次元線形系の詳細および線形系の実現問題，特に実時間部分実現問題については，別な論文で取り扱う。

参考文献
1) 長谷川，松尾：離散時間・接続状態の実現理論，計測自動制御学会論文集，28-2, 199/207(1992)
2) 長谷川，松尾：離散時間線形表現系の実現理論，計測自動制御学会論文集，15-3, 298/305(1979)
4) プルパス：数学振動2，東京図書(1970)
5) 松尾，新家：連続時間アファイン力学系の実現理論，計測自動制御学会論文集，17-1, 56/63(1979)
6) 新家，松尾：線形時間線形表現系とアファイン力学系の関係，計測自動制御学会論文集，17-3, 350/357(1981)
7) 松尾，長谷川：離散時間・接続状態の実時間部分実現理論，第35回自動制御連合講演会，71/72(1992)

付録A 線形系
線形系は線形系の中で特殊な系であり，入力が状態に線形に作用する項を考察する系である（定義(3.1)参照）。したがって，本節で線形系を導出する準備として線形系を述べ，その詳細については文献1)5)，6)を参照されたい。
(A.1) 定義
次式で表わされる系を線形系といい，線形系
\[\sigma = ((X, F), g, h, h_0) \] と書く。
\[
\begin{align*}
x(0) &= 0 \\
x(t+1) &= Fx(t) + g(a(t+1)) \\
y(t) &= h^0 + hx(t)
\end{align*}
\]
ただし，\(X \) は \(h \) 上の線形空間，\(x(t) \in X \) であり，\(F \in L(X) \)，\(g \) は写像 \(g: U \rightarrow X \)，\(h \) は線型写像 \(h: X \rightarrow Y \)
である。更に，\(k \in \mathbb{Y} \) である。
線形系 \(\sigma = ((X, F), g, h, h_0) \) に対し関数 \(a_0: U^* \rightarrow Y; \omega \mapsto a_0(\omega) = h^0 + h \left(\frac{\omega}{a_0} F^{j=0} - g(\omega(j)) \right) \) を \(\sigma \) の挙動（behavior）という。
(A.2) 補題
線形系 \(\sigma = ((X, F), g, h, h_0) \) の挙動 \(a_0 \) は時不変・入
力応答関数である。

(A.3) 定義
時不変入力応答関数 \(a \in F(U^*, Y) \) に対し、\(a_r = a \) となる擬線形系 \(\sigma = a \) を実現するといわれる。

\[\sigma = ((X, F), g, h, h^0) \] は擬線形系とする。\(\sigma \) が線形に関して \(\{F^w_{t+1}g(o(j))\} : o \in U^* \) の集合 \(\sigma \) が \(X \) に一致するとき、\(\sigma \) は擬可到達であると定義される。任意の \(m \in N \) に対し、\(h^m_{X} = h^m_{X_1} = \cdots = h^m_{X_k} \) であるとき、\(\sigma \) は可観測であるといわれる。擬可到達であり可観測であるとき、\(\sigma \) は正準であるといわれる。

(A.4) 定義
\(\sigma_1 = ((X_1, F_1), g_1, h_1, h^0_1) \) \(\sigma_2 = ((X_2, F_2), g_2, h_2, h^0_2) \) を擬線形系とする。線形写像 \(T : X_1 \times X_2 \to T(F_1 \times F_2) \) として、\(T \) は \(\sigma_1 \to \sigma_2 \) の擬線形系許容する。特に \(T : X_1 \times X_2 \) が全単射であるとき、\(T \) は \(\sigma_1 \to \sigma_2 \) の同形変換であるという。

(A.5) 擬線形系の実現定理
任意の時不変入力応答関数 \(a \in F(U^*, Y) \) に対し、それを実現するものと二つの正準擬線形系が存在する (存在部分)、\(\sigma_1, \sigma_2 \) を同形変換をもつ二正準擬線形系とする。そのとき、同形変換 \(T : \sigma_1 \to \sigma_2 \) がただ一つ存在する (唯一部分)。

(B. 擬線形系から概線形系の導出）

本章では、3 章で定義した概線形系を擬線形系の中の特殊な力学系として導入する。擬線形系の詳細については、付録 A を参照されたい。概線形系は状態の推移が自由運動による項と入力が非線形に作用する強制項ととの和により与えられる力学系である。それに対して、擬線形系は自由運動の項と入力を状態に線形に作用する項との和で与えられる力学系である。擬線形系よりも概線形系に近い系である。

(B.1) 命題
可観測な擬線形系 \(\sigma = ((X, F), g, h, h^0) \) の挙動 \(a : U^* \to Y \) は、\(a \) と \(\omega = a(w) = h + \sum_{i=1}^{w} F^w_{t+1}g(o(j)) \) がアファイン写像で \(U^* \to Y \) であるとき、

\[
\begin{align*}
&\{a(\omega + \omega') = a(\omega) + a(\omega') \}
&\{a(\omega \cdot \omega') = a(o) \cdot a(o') \}
&\{a(\omega) = \sum_{\nu} \omega(\nu) + (1-\lambda) a(\omega') \}
\end{align*}
\]

を満たすとき、写像 \(g : U \to X \) はアファイン写像である。

ただし、任意の \(\omega, \tilde{\omega} \in U^*(\rho), \rho \in N \) であるとき、（証明）時不変入力応答関数がアファインであることを考慮して、直接計算により得られる。

(B.2) 定義
擬線形系 \(\sigma = ((X, F), g, h, h^0) \) の写像 \(g : U \to X \) がアファイン写像であるとき、すなわち、任意の \(u \in U \) に対し、\(g(u) = g(0^0) + g(u) \) となる線形写像 \(g : U \to X \) が線形系であるとき、\(\sigma = ((X, F), g, h, h^0) \) を擬線形系といい、\(\sigma \) の状態構造 \((X, F) \) を自由運動という。

(B.3) 補題
任意の線形写像 \(g : U \to X \) に対し、\(g \cdot u = g(u) \) \(\forall u \in U \) により \(g \) により \(g \in X \) が存在するとき、この対応は全単射である。

（証明）容易に得られる。

（注意） 補題 (B.3) により概線形系 \(\sigma = ((X, F), g, h, h^0) \) のシステム方程式は次式に書き替えられる。

\[
\begin{align*}
\chi(t+1) &= Fx(t) + g(0^0) + g \cdot a(t+1) \\
\chi(0) &= 0 \\
\gamma(t) &= h^0 + h(x(t))
\end{align*}
\]

ただし、\(g \cdot a(t+1) = a(g(t+1) - g(0^0)) \) したがって、概線形系 \(\sigma = ((X, F), g, h, h^0) \) を指し、概線形系 \(\sigma = ((X, F), g(0^0), g, h^0) \) を指す。

（注意）定義 (3.1) の概線形系と定義 (B.2) の概線形系は同一のものである。したがって、擬線形系から概線形系を導出することができた。

（C. 洗練された概線形系）

本章において、概線形系の実現定理 (3.8) の存在部分 (特に存在定理 (3.6)) を得るために、洗練された概線形系を導入する。概線形系は擬線形系の特殊な系であるから、すでに得られている擬線形系の成果に基づいて概線形系（これを整数的な概線形系という）を同等的に洗練された概線形系に変換する。

C.1 線形入力写像付き自由運動

この節では、概線形系の入力機構について考察する。概線形系の入力機構として入力写像付き自由運動を導入し、それに対して二つの線形入力写像付き自由運動が対応することを示す。更に、入力写像付き自由運動の擬可到達性が全射である線形入力写像付き自由運動に対応することを示す。

（C.1）定義
自由運動 \((X, F) \), アファイン写像 \(g : U \to X \) に対して、入力 \(u \in U \) に対し、\(g(u) = g(0^0) + g \cdot u, g(0^0) \) に対し、\(g_0(0^0) = g_0(0^0) \) となる線形写像 \(g : U \to X \) に対し、\(g_{1} \) に \(g_{1} = g \) と \(g_{1} = g \) に \(g \) と入力写像付き自由運動という。

入力写像 \(f(X_1, F_1) \), \(f_0(X_1, F_1) \) に対し、\(F_1 = F_1 \) に \(f_1 \) と \(f_1 \) に \(f_1 \) に \(f_1 \) と入力写像付き自由運動 \((X_1, F_1) \to (X_2, F_2) \) に対し、\(f_0(0^0) = g(0^0) \) に \(f_0(0^0) \) と \(f_0(0^0) \) に \(f_0(0^0) \) と入力写像付き自由運動 \((X_1, F_1) \to (X_2, F_2) \) に入力
写像付き自由運動射: \(((X, F), g(0^q), \hat{g})\rightarrow((X, F), g(0^q), \hat{g})\) という。

(C.2) 命題
任意の入力写像付き自由運動 \(((X, F), g(0^q), \hat{g})\) に対し入力写像付き自由運動射 \(G: ((A(N \times [0, 1], k, S_r), e(0,0), f_A), ((X, F), g(0^q), \hat{g}))\) がただ一つ存在する。

逆に、任意の自由運動射 \(G: ((A(N \times [0, 1], k, S_r), e(0,0), f_A), ((X, F), g(0^q), \hat{g}))\) に対し \(G(0^q) := G(0^q), \tilde{g} := G(\tilde{g})\) により得られる \(((X, F), g(0^q), \hat{g})\) は入力写像付き自由運動である。

(C.3) 定義
自由運動射 \(G: ((A(N \times [0, 1], k, S_r), e(0,0), f_A), ((X, F), g(0^q), \hat{g}))\) が誤った一応対応し、この対応は全単射である。

(C.4) 命題
\(((X, F), g(0^q), \hat{g})\) を入力写像付き自由運動 \(((X, F), g(0^q), \hat{g})\) に対応する線形入力写像付き自由運動とする。そのとき \(((X, F), g(0^q), \hat{g})\) が誤り到達であるための必要十分条件は \(G\) が全射であるである。

(C.5) 定義
自由運動射 \(G: ((A(N \times [0, 1], k, S_r), e(0,0), f_A), ((X, F), g(0^q), \hat{g}))\) に対し \(G(e(0,0)) := G(e(0,0)), g := G(g)\) が誤り到達であることを示す。

(C.6) 命題
自由運動射 \(H: ((X, F), h)\) に対し、入力写像付き自由運動 \(((X, F), h)\) に対し、線形観測写像付き自由運動 \(((X, F), h)\) がただ一つ対応し、この対応は全単射である。

(C.7) 定義
自由運動射 \(H: ((X, F), h)\) に対し、線形観測写像付き自由運動 \(((X, F), h)\) に対し、線形観測写像付き自由運動 \(((X, F), h)\) の \(H\) がただ一つ対応し、この対応は全単射である。

C.3 洗練された線形形系
この節では、C.1, C.2 節の成果を基に洗練された線形形系を定義する。そこで、任意の時不変・アファイン入力応答関数を実現する洗練された線形形系を与える。

(C.9) 定義
線形入力写像付き自由運動 \(((X, F), G)\) 線形観測写像付き自由運動 \(((X, F), H)\) に対し、線形形系 \(\Sigma = ((X, F), G, H, \tilde{h})\) を洗練された線形形系とする。

ただし、\(\tilde{h} \in Y\) である。写像 (A, \(\tilde{a}\)) := \(HG + \tilde{h}\)： \((A(N \times (0, 1), k), (X, F), h)\) を \(\Sigma\) の挙動 (behavior) という。自由運動射 \(A: ((A(N \times (0, 1), k), S_r) \rightarrow ((F(N, Y), S_r), S_r)\) を入力写像という。

ある数 \(a(1) \in Y\) および線形入力出力写像 \(A\) に対し、
\(HG = A, \tilde{h} = a(1)\) を満たす洗練された線形形系 \(\Sigma = ((X, F), G, H, \tilde{h})\) は \((A, a(1))\) を実現するという。

(C.10) 例
ある数 \(h^p \in Y\) および線形入力出力写像 \(A: ((A(N \times (0, 1), k), S_r) \rightarrow ((F(N, Y), S_r), S_r), I, A, h^p)\) に対し、線形形系 \((A(N \times (0, 1), k), S_r)\) に比、\(I, A, h^p\) は \((A, h^p)\) を実現する洗練された線形形系である。

ただし、\(I\) は \((A(N \times (0, 1), k) \rightarrow A(N \times (0, 1), k)\) の恒
等写像である。
(C.11) 例
ある数 $k' \in Y$ および線形入出力写像 $A : (A(N \times \{0, 1\}, k, S_r) \to (F(N, Y), S_i)$ 対し、組 $((F(N, Y), S_i), A, I, h^0)$ は (A, h') を実現する洗練された線形系である。
ただし、I は $F(N, Y) \to F(N, Y)$ の恒等写像である。
命題(C.2)、(C.6)により容易につぎの補題が得られる。
(C.12) 補題
(素朴な)線形系 $\Sigma = ((X, F), g(0^1), g, h, h^0)$ 対し、洗練された線形系 $\Sigma' = ((X, F), G, H, h^0)$ に対し、その対応は全単射である。
命題(C.2) は(C.6)において、入力写像付き自由運動 $((X, F), g(0^1), g)[出力写像付き自由運動 $((X, F), h)] = (F(N, Y), S_r) \in \Sigma' = \{(A(N \times \{0, 1\}, k, S_r), g)\}$ と置けば、つぎの補題が得られる。
(C.13) 補題
任意の線形入出力写像 $A : (A(N \times \{0, 1\}, k), S_r) \to (F(N, Y), S_i)$ 対し、時不変・アファイン入力応答関数 a が次式により対応し、この対応は全単射である。
$$a(\omega \theta) - a(\omega) = (A(a_\omega, a))(t)$$
ただし、$\forall \omega \in U^*, |a| = t$。
(C.14) 定義
洗練された線形系 $\Sigma = ((X, F), G, H, h^0)$ 対し、G が全射であり、H が単射であるとき、Σ は正準であるといわれる。
(注意) $\Sigma = ((X, F), G, H, h^0)$ を素朴な線形系 $\Sigma = ((X, F), g(0^1), g, h, h^0)$ 対応する洗練された線形系とする、そのとき、命題(C.4), (C.8) により Σ が正準であることと σ が正準であることは同等である。
(C.15) 定理(存在定理)
ある数 $k' \in Y$ および線形入出力写像 $A : (A(N \times \{0, 1\}, k), S_r) \to (F(N, Y), S_i)$ 対し、つぎの系は (A, h') を実現する洗練された正準線形系である。
1) $((A(N \times \{0, 1\}, k) / \ker A^t, S_r), \pi, A^t, h^0)$
2) $((\text{im } A, S_r), A^t, j, k)$
ただし、写像 $\pi : A(N \times \{0, 1\}, k) \to A(N \times \{0, 1\}, k) / \ker A^t$、写像 $j : \text{im } A \to F(N, Y)$ は、それぞれ標準的全射、標準的単射であり、写像 $A^t : A(N \times \{0, 1\}, k) / \ker A^t \to F(N, Y)$、写像 $\pi : A(N \times \{0, 1\}, k) \to \text{im } A$ はそれぞれ A に付随する全射、単射である。
さらに、線形写像 $S_r : A(N \times \{0, 1\}, k) / \ker A \to A(N \times \{0, 1\}, k)$ は、A の DEF による洗練された正準線形系となる。
(証明) 例(C.10), 例(C.11), 定義(C.14) およびその注意により、洗練された線形系 1)、2) が (A, h') を実現する洗練された正準線形系となる。
(証明終)
(注意) 定理(C.15) と補題(C.12) および補題(C.13) により線形系の実現の存在定理(3.6) が証明できた。

[著者紹介]

長谷川 泰 道 (正会員)
1976 年、名古屋大学大学院工学研究科博士課程修了。現在、岐阜大学工学部電子情報工学科助教授。特に離散時間非線形系のシステム理論および交流系の研究に従事(工学博士)。

故 松 尾 強
1961 年、名古屋大学工学部電気学科卒業。同富士電機製造(株)入社。63年名古屋大学助手。72〜75年フロリダ大学数学的システム理論センター研究員、84〜89年名古屋大学工学部講師および助教授。90年東邦大学理学部教授。93年4月死去。制御理論、システム理論の研究に従事した(工学博士)。
