A Parallel Feedforward Compensator Realizing ASPRness for Plants with Structured Uncertainty

Mingcong Deng*, Ikuro Mizumoto* and Zenta Iwai*

A systematic and quantitative design method for the parallel feedforward compensator (PFC) is proposed so as to realize an almost strictly positive real (ASPR) augmented plant for plants with the structured uncertainty. The design procedure is described, using an illustrative example of interval systems.

Key Words: parallel feedforward compensator, almost strict positive realness, structured uncertainty

1. Introduction

The problem of designing a system that is almost strictly positive real (ASPR) for systems with structured uncertainty is considered. A parallel feedforward compensator (PFC) is proposed to realize an ASPR augmented plant. The design procedure is described, using an illustrative example of interval systems.

2. Problem Setting

Consider the system

\[G(s) = \frac{N(s)}{D(s)} \] (2.1)

where

\[D(s) = s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0 \] (2.2)

\[a_i \geq a_i, \quad a_i \geq a_i, \quad b_i \geq b_i, \quad b_i \geq b_i, \quad i = 0, 1, \ldots, n-1 \]

\[N(s) = b_ms^m + b_{m-1}s^{m-1} + \cdots + b_1s + b_0 \] (2.3)

\[b_i \geq b_i, \quad b_i \geq b_i, \quad i = 0, 1, \ldots, m \]

This PFC is designed such that the conditions of Theorem 1 are satisfied.

3. Parallel Feedforward Compensator (PFC) Design

3.1 Basic PFC Design

First, the PFC is designed to satisfy Theorem 1. Then, the PFC is designed to satisfy Theorem 2. The design procedure is described using an illustrative example of interval systems.

\[F(s) = \sum_{i=1}^{r} d_i F_i(s), \quad F_i(s) = \frac{\beta_i n_i(s)}{d_i(s)} \] (3.1)

where

\[\gamma = n - m, \quad \delta > 0 \]

TR 0061/97/3301-0060 © 1996 SICE

3.2 インターバルシステムに対する PFC 設計

(3.1) で与えられる PFC を施した拡張系 \(G_d(s) \) の零点多項式 \(N_d(s) \) は

\[
N_d(s) = N_d(s) + D_d(s) \tag{3.3}
\]

となる。ここで、定理 1 で与えられた PFC の \(d_i(s) \), \(n_i(s) \) の選定において、さらに以下の条件を付加する。

\([d_i(s) \text{ に対する付加条件}] \)

\[
N_d(\eta^-_i, s) = N(\eta^-_i, s) \prod_{i=1}^{\gamma-1} d_i(s) \tag{3.8}
\]

\[
N_d(\eta^+_i, s) = N(\eta^+_i, s) \prod_{i=1}^{\gamma-1} d_i(s) \tag{3.9}
\]

とおくとき

\[
N_d(s) = \eta^-_0 + \eta^-_1 s + \eta^-_2 s^2 + \eta^-_3 s^3 + \eta^-_4 s^4 + \cdots
\]

\[
N_d(s) = \eta^+_0 + \eta^+_1 s + \eta^+_2 s^2 + \eta^+_3 s^3 + \eta^+_4 s^4 + \cdots
\]

\[
N_d(s) = \eta^-_0 + \eta^-_1 s + \eta^-_2 s^2 + \eta^-_3 s^3 + \eta^-_4 s^4 + \cdots
\]

\[
N_d(s) = \eta^+_0 + \eta^+_1 s + \eta^+_2 s^2 + \eta^+_3 s^3 + \eta^+_4 s^4 + \cdots
\]

が安定となるように \(d_i(s) \) を選定する。ここに、\(N(\eta^-_i, s) \) なる表記法は、\(s \) の \(i \) 次の係数が \(\eta^-_i \) である多項式 \(N_d(s) \) を表わすものとする。すなわち、\(\eta^-_i, \eta^+_i \) は、\(N(s) \) の係数の下限値 \(b^-_i \) および上限値 \(b^+_i \) を用いて計算された \(N_d(s) \) の係数である。

\([n_i(s) \text{ に対する付加条件}] \)

\(n_i(s) \) すべての係数が正

このとき、(3.1) で与えられた PFC の \(\delta \) の選定に関し、以下の定理を得る。

\(\text{定理 2} \)

\[
N_{ai}(s) = N_{ai}(s) + D_{ai}(s), \quad i = 1, \ldots, 4 \tag{3.11}
\]

とする。ここで \(D_{ai}(s), i = 1, \ldots, 4 \) は、\(D(s) \) の係数の下限値 \(a^-_i \) および上限値 \(a^+_i \) を用いて構成される \(D_{ai}(s) \):

\[
D_{ai}(s) = D_{ai}(s) \sum_{j=1}^{\gamma-1} \left\{ \delta_j \beta_j n_i(s) \prod_{i=j+1}^{\gamma-1} d_i(s) \right\}
\]

\[
\tag{3.12}
\]

\[
D_{ai}(s) = D_{ai}(s) \sum_{j=1}^{\gamma-1} \left\{ \delta_j \beta_j n_i(s) \prod_{i=j+1}^{\gamma-1} d_i(s) \right\}
\]

\[
\tag{3.13}
\]

の係数 \(\alpha^-_i(\delta), \alpha^+_i(\delta) \) に関し、(3.10) 同様の規則で定義する端点多項式である。このとき、\(N_{ai}(s) \) が \(0 < \delta < \delta^*_i \) なる \(\delta \) で安定となる \(\delta^*_i \) が存在し、さらに、\(0 < \delta < \min\{\delta^*_i \} \) なる \(\delta \) で \(G_d(s) \) は、必ずしも ASPR となる。

(証明) \(d_i(s) \) がモニック安定多項式で与えられたことから、\(d_i(s) \) のすべての係数は正である。よって、\(N(s) \) の係数の下限値 \(b^-_i \) または上限値 \(b^+_i \) を用いて構成される \(N_d(s) \) の係数 \(\gamma^-_i \) および \(\gamma^+_i \) (3.8),(3.9) (参照) は、それぞれ \((3.4) \) で与えられる \(N_d(s) \) の係数 \(\eta_i \) の下限値および上限値である。すなわち、(3.10) により定義された \(N_{ai}(s) \) は、\(N(s) \) のカーリノフ多項式 \(\gamma_i \) なる。同様に、\(n_i(s) \) のすべての係数が正であると仮定し、\(\beta \geq 0 \) であると仮定し、\(D(s) \) の係数の下限値 \(a^-_i \) または上限値 \(a^+_i \) を用いて構成される \(D_{ai}(s) \) の係数 \(\alpha^-_i(\delta) \) および \(\alpha^+_i(\delta) \) (3.12),(3.13) (参照) は、\(\delta > 0 \) なるある \(\delta \) に対し、それぞれ \((3.6) \) で与えられた \(D(s) \) の係数 \(\alpha_i(\delta) \) の \(\delta \) における下限値および上限値を与える。よって、\(\alpha^-_i(\delta), \alpha^+_i(\delta) \) に関し、(3.10) 同様の規則で定義される \(D_{ai}(s) \) は、それぞれの与えられた \(\delta \) において、その \(\delta \) における \(D_{ai}(s) \) のカーリノフ多項式となる。すなわち、(3.11) で定義される \(N_{ai}(s) \) は、すべての \(\delta > 0 \) なる \(\delta \) に対し、それぞれの与えられた \(\delta \) での \(N_{ai}(s) \) に対するカーリノフ多項式となる。さて、このときの \(N_{ai}(s) = 0 \) の根は、(3.10) 同様の手順により、\(\delta \to 0 \) で \(N_{ai}(s) = 0 \) の \(\gamma \) つの有界な根および \(\gamma = n - m \) 個の \(\delta \) による無限遠点 \(s_i = \delta \), \(x_i : r(s) = 0 \) の根へ向かう。ただし、\(r(s) = \beta_{i-1}s^{i-1} + \cdots + \beta_1 s + \beta_0 \) である。すなわち、\(\delta \) に対して、それより小さいすべての \(\delta > 0 \) で \(N_{ai}(s) = 0 \) の根はすべて左半面に位置する \(\delta^*_i \) の存在することがわかる。よって、\(N_{ai}(s) = 0 \) の

\(i = 1, \ldots, 4 \) がそれぞれの与えられた \(\delta \) での \(N_{ai}(s) \) のカーリノフ多項式であることおよび \(0 < \delta < \min\{\delta^*_i \} \) なる \(\delta > 0 \) すべての
ナ1(s)が安定となることより、0＜δ＜min{δ1}なるすべてのδで、ナ2(s)が安定となることは明らかである7,8)。さらに、拡張系Gn(s)は、必ずじ相対次数1かつ相対次元0となる9)。よって、Gn(s)はASPRとなる。

上記定理より、結局、δは、プラントパラメータに関する既知情報から、カルテシフ多項式Na(s), i=1,…,4を構成し、こちらをすべて安定にするδの最大値以下に選定すればよいことが解る。

4. 設計例

対象プラントは、構造的な不確かさを有するプラント：

\[G(s) = \frac{k_p}{s^3 + a_1 s^2 + a_2 s + a_3} \quad (4.1) \]

とし、パラメータの範囲は、つきのように設定する。

\[1 \leq k_p \leq 3, \quad -4.5 \leq a_1 \leq -2.6, \]
\[-3 \leq a_2 \leq 5.7, \quad -1.5 \leq a_3 \leq 2 \]

式(3.1)より、PFCを

\[F(s) = \frac{\delta^2}{s+1} + \frac{2\delta}{(s+1)^2} \quad (4.2) \]

と設計する。このとき、式(3.11)は、

\[
\begin{align*}
N_{a1} &= (1 - 3\delta - 1.5\delta^2) + (2 - 6\delta - 1.5\delta^2)s \\
&\quad + (3 - 5.2\delta - 3.1\delta^2)s^2 + (25 - 1.6\delta^2)s^3 + 5.7s^4 \\
N_{a2} &= (1 - 3\delta - 1.5\delta^2) + (6 + 11.4\delta + 7.7\delta^2)s \\
&\quad + (3 - 5.2\delta - 3.1\delta^2)s^2 + (25 - 3.5\delta^2)s^3 + 9.8s^4 \\
N_{a3} &= (3 + 4\delta + 2\delta^2) + (2 - 6\delta - 4.5\delta^2)s \\
&\quad + (1 - 9\delta - 7.5\delta^2)s^3 + 5.7s^4 \\
N_{a4} &= (3 + 4\delta + 2\delta^2) + (6 + 11.4\delta + 7.7\delta^2)s \\
&\quad + (1 - 9\delta - 7.5\delta^2)s^3 + (23 - 3.5\delta^2)s^4 + 9.8s^4 \\
\end{align*}
\]

となる。この四つの多項式がそれぞれ安定多項式となるδは、つきのようになる。

\[\delta_1 < 0.2763, \quad \delta_2 < 0.2252, \quad \delta_3 < 0.0698, \quad \delta_4 < 0.0701 \]

よって、定理2より、δ＜min{δ1, δ2, δ3, δ4} = 0.0698で与えば拡張系は、必ずじASPRとなることが解る。

つまり、(4.1)において、プラントパラメータをある値に設定したプラントを用い、上記の上限値の検証を行う。対象プラントは、それぞれすべてのパラメータの上限値と下限値を使って、つきのように与えた。

Case1: G1(s) = \frac{3}{s^3 - 2.6s^2 + 5.7s + 2}

Case2: G2(s) = \frac{1}{s^3 - 4.5s^2 - 3s - 1.5}

式(4.2)で与えるPFCを付加した拡張系は、

\[G_{a1}(s) = G_1(s) + F(s), \quad i = 1, 2 \]

となる。Fig.1とFig.2にδを小さくして行くことで得られるそれぞれの拡張系零点の軌跡を示す。0.0698以下のδですべての拡張系零点が左半面に位置していることが解る。

5. 結 言

本報告では、構造的な不確かさを有する系（インパルスシステム）に対するプラントASPR系PFCの設計法の提案を行った。提案手法では、プラントの既知情報を積極的に利用することでPFCパラメータを定量的に設計できる。

参考文献

4) 岩井，本木，足立：定数出力フィードバックによるモデル出力追従制御とその寄生要素に関するロバスト性，計測自動制御学会論文集，30-1, 31/38 (1994)
7) 木村，藤井，森：ロバスト制御，コロナ社 (1994)