Subspace Model Identification of Continuous-Time Systems with the Aid of the w-Operator

Zi-Jiang Yang*

The subspace-based state space system identification algorithms have received great attentions owing to its efficiency especially for high-order multivariable systems. Usually, this class of methods are focused on discrete-time models, which may cause some numerical problems when the sampling interval is relatively small. This paper proposes a new approach to subspace-based state space system identification for continuous-time systems from sampled input-output data. The operator $w = (p - \alpha)/(p + \alpha)$ where p denotes the differential operator, is introduced to avoid direct numerical differentiations. Hence the system can be identified based on a new state space model in the w-operator. And then the estimated w-operator state-space model can be transformed back to the common continuous-time state space model. It is shown through simulation study that the proposed method is numerically superior to some other existing approaches.

Key Words: subspace model identification, continuous-time system, w-operator, sampled data

1. はじめに

近年，システム同定の分野で，SVD や LQ 解分などの数值的に安定なアルゴリズムを利用する部分空間同定法が精力的に研究され，脚光を浴びている。これまでに発表された部分空間同定法はほとんど離散時間状態空間モデルに基づいている。しかし，離散時間モデルでは，サンプリング周期が小さいとき，モデルの精度が単位円に近づくので，離散時間モデルとの対応が悪く，モデルが同定しにくくなる。また，入力信号が比較的自然である場合，同定問題は厳し条件になりやすい。そのような場合，同定精度を改善するために，収集したシステムの出力データをもとの一程度異なる（より長い）サンプリング周期でリサンプリングしてから同定するというデジタル処理の手法が考えられる。同定できた離散時間モデルを逆変換すれば，もとの離散時間モデルが得られるが，このアプローチは文献で離散時間モデルの間接同定法という。しかし，デジタル処理を上げていくにつれて，離散時間モデルの近似誤差も増えるので，局所同定精度の改善に限界がある。

一方，状態変数フィルタを用いて，連続時間状態空間モデルを直接同定することも考えられてきた。これは，システムの入力信号の微分を状態変数フィルタで処理した後，部分空間同定法を適用する方法である。しかし，特にシステムの次数が高い場合，たとえ前処理フィルタで処理されたとしても，信号の高次の微分値と低次の微分値の振幅が非常に異なるので，同定問題が悪条件になり，同定結果が著しく劣化する恐れがある。

本論文では，前述の問題点を解決するため，演算子

$$ w = (p - \alpha)/(p + \alpha) $$

を導入し，同定対象と入力関係性が等価な w 演算子状態空間モデルを導出する。ただし， p は微分演算子である。そこで，部分空間同定法を適用し，システムの w 演算子状態空間モデルを同定する。同定された w 演算子状態空間モデルを逆変換すれば，普通の連続時間状態空間モデルが得られる。w 演算子はノンパラメトリックモデルの同定でよく使われているラグジュールフィルタと対応しているので，システムの次数が高い場合でも，同定に関わるデータ行列の条件数が著しく大きくなることがなく，精度のよい同定結果を得ることができる。w 演算子の極を決める定数 α を選定する指針についても考慮し，提案される手法の有効性を，デジタル処理を用いた間接同定法および状態変数フィルタを用いた直接同定法との比較を通じて明らかにする。

2. 問題の提起

2.1 問題の設定

同定対象となる線形連続時間系は次のような連続時間状態空間モデルで表されるとする。

$$ x(t) = A_x(x(t)) + B_xu(t) $$
$$ y(t) = C_xe(t) + D_xw(t) $$

ただし，$u(t) \in R^m$, $y(t) \in R^l$, $x(t) \in R^n$ はそれぞれ入力
信号、出力信号、状態変数であり、$A_c \in \mathbb{R}^{n \times n}$、$B_c \in \mathbb{R}^{n \times m}$、$C_e \in \mathbb{R}^{r \times n}$、$D_e \in \mathbb{R}^{r \times m}$。
出力信号のサンプル値 $y[k]$ には、平均値ゼロの離散値確率分布 $v[k]$ が加わる関係式：

$$z[k] = y[k] + v[k]$$

ただし、T はサンプリング周期であり、$f[k]$ は $f(kT)$ を表す。

我々の目的は、システムの入出力データのサンプル値から(1) 式と等価な状態空間モデルを同定することである。

2.2 デシメーションを用いた間接同定法

普通、システム同定はデジタル処理を前提としているので、ゼロ次ホールド入力、またはサンプリング周期 T が十分小さい場合、(1) 式の連続時間モデルは、次のような離散時間モデルで近似できる。

$$x[k + 1] = Ax[k] + Bu[k]$$

$$y[k] = Cx[k] + Du[k]$$

上式より、次の関係を導出するのが容易である。

$$
\begin{bmatrix}
 y[k] \\
 y[k + 1] \\
 y[k + i - 1]
\end{bmatrix}
= \begin{bmatrix}
 u[k] \\
 u[k + 1] \\
 \vdots \\
 u[k + i - 1]
\end{bmatrix}
$$

ただし、

$$H_{di} = \begin{bmatrix}
 D_d & 0 & \cdots & 0 \\
 C_dB_d & D_d & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 C_dA_d^{i-2}B_d & C_dA_d^{i-3}B_d & \cdots & D_d
\end{bmatrix}$$

$$\Gamma_{di} = \begin{bmatrix}
 C_d \\
 Ca_d \\
 \vdots \\
 Ca_d^{i-1}
\end{bmatrix}$$

(4) 式に対して、部分空間同定法を適用すれば、等価なシステム行列 ($A_{at}, B_{at}, C_{at}, D_{at}$) を求めることができが、離散時間モデルでは、サンプリング周期が小さいとき、モデルの極が単位円に近づくので、連続時間モデルとの対応が悪く、モデルが同定しにくくなる。そのために、入力信号が比較的小さい場合、ベクトル $[u(k), u(k + 1), \ldots, u(k + i - 1)]^T$ からなるデータ行列

$$
\begin{bmatrix}
 u[k] & u[k + 1] & \cdots & u[k + N - 1] \\
 u[k + 1] & u[k + 2] & \cdots & u[k + N] \\
 \vdots & \vdots & \ddots & \vdots \\
 u[k + i - 1] & u[k + i] & \cdots & u[k + i + N - 2]
\end{bmatrix}
$$

において、間接する各ベクトルは互いに類似してしまう（相関が強い）ので、行列の条件数が大きくなる恐れがある。

入力信号のデータ行列の条件数が大きい場合、部分空間同定法の同定結果が雑音の影響を受けやすいことが理論的に示されている。同定精度を改善するために、収集したシステムの入出力データをもう一度異なるサンプリング周期でサンプリングしてから同定を行うというデシメーション処理の手法が考えられる。サンプリング周期を大きくすることによって上記のデータ行列の各行間の位相差を大きく（相関を弱く）することができれば、データ行列の条件数が改善される。しかし、データ行列の条件数が小さくならないと、同定結果の精度が低下する。

同定できた離散時間モデルを MATLAB の関数を利用して変換すれば、(1) 式の連続時間モデルが得られるが、このアプローチは離散時間モデルの間接同定法と呼ばれる。

2.3 状態変数フィルタを用いた直接同定法

一方、(1) 式の連続時間状態空間モデルを直接同定する部分空間同定法も考えられている。これは、システムの入出力信号の微分を状態変数フィルタで処理した後、部分空間同定法を適用する方法である。

離散通過状態変数フィルタ $(p/\alpha + 1)^i$ を導入すると、(1) 式より、次の関係が得られる。

$$
\begin{bmatrix}
 \xi_0(t) \\
 \xi_1(t) \\
 \cdots \\
 \xi_{i-1}(t)
\end{bmatrix}
= \begin{bmatrix}
 x(t) \\
 (p/\alpha + 1)^i \xi_{i-1}(t)
\end{bmatrix}
$$

ただし、

$$H_{ei} = \begin{bmatrix}
 D_e & 0 & \cdots & 0 \\
 C_eB_e & D_e & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 C_eA_e^{i-2}B_e & C_eA_e^{i-3}B_e & \cdots & D_e
\end{bmatrix}$$

$$\Gamma_{ei} = \begin{bmatrix}
 C_e \\
 Ca_e \\
 \vdots \\
 Ca_e^{i-1}
\end{bmatrix}$$

(9)

$$
\begin{bmatrix}
 \xi_{0e}(t) \\
 \xi_{1e}(t) \\
 \cdots \\
 \xi_{i-1e}(t)
\end{bmatrix}
= \begin{bmatrix}
 x(t) \\
 (p/\alpha + 1)^i \xi_{i-1e}(t)
\end{bmatrix}
$$

付録に省略されている H_{ei}、Γ_{ei} の計算方法は、(10) 式において、$\xi_{j}(t) = (p/\alpha + 1)^j x(t)$ なるデータ行列

$$
\begin{bmatrix}
 \xi_{0e}(t) \\
 \xi_{1e}(t) \\
 \cdots \\
 \xi_{i-1e}(t)
\end{bmatrix}
= \begin{bmatrix}
 x(t) \\
 (p/\alpha + 1)^i \xi_{i-1e}(t)
\end{bmatrix}
$$

(10)

状態変数フィルタを離散化し、フィルタ出力のサンプル値を計算すれば、部分空間同定法を適用して、連続時間状態空間モデルと等価なシステム行列 ($A_{at}, B_{at}, C_{at}, D_{at}$) を直接求めることができる。状態変数フィルタを用いた直接同定法では、(7) 式中のベクトル $[\xi_{0e}(t), \xi_{1e}(t), \cdots, \xi_{i-1e}(t)]^T$ の各要素は微分
の次数が異なるので、入力信号が十分多い周波数成分を含ん
deばれ、フィルタ出力のサンプル値からなるデータ行列
\[
\begin{bmatrix}
\xi_{0w}[k] & \xi_{0w}[k+1] & \cdots & \xi_{0w}[k+N-1] \\
\xi_{1w}[k] & \xi_{1w}[k+1] & \cdots & \xi_{1w}[k+N-1] \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{(i-1)w}[k] & \xi_{(i-1)w}[k+1] & \cdots & \xi_{(i-1)w}[k+N-1]
\end{bmatrix}
\]
が行フーリエ釣となることが可能である。しかし、たとえ前
処理フィルタで処理されたとしても、信号の高次微分値と低
次微分値の振幅の差が大きくなることがしばしばある。した
がって、上記のデータ行列において、i が大きい場合、最初
の行と最後の行の信号の振幅の差が非常に大きくなるので、
行列の条件数も大きく、同定問題が恶化的になる恐れが
ある13)。

本論文では、次章で示すように、w 演算子を導入すること
によって、上記の問題点を回避する。

3. w 演算子状態空間モデル

ここで、次のような w 演算子を導入する。
\[w = \frac{P - \alpha}{P + \alpha} \quad (11) \]
ただし、\(\alpha > 0 \) である。

上式より、微分演算子 \(P \) は次のように得られる。
\[p = \alpha 1 + w \quad \frac{1}{1 - w} \quad (12) \]

それを (1) 式で表されるシステムの伝達関数
\[G_c(p) = C_c(pI - A_c)^{-1}B_c + D_c \quad (13) \]
に代入すると、次のような w 演算子伝達関数が得られる。
\[G_w(w) = C_w(wI - A_w)^{-1}B_w + D_w \quad (14) \]

この伝達関数と等価な w 演算子状態空間モデルは次のよう
に書ける。
\[
x_w(t) = A_w x_w(t) + B_w u(t) \\
y(t) = C_w x_w(t) + D_w u(t)
\]
ただし、
\[
A_w = (A_c + \alpha I_n)^{-1}(A_c - \alpha I_n) \\
B_w = \frac{2\alpha}{C_w} (A_c - \alpha I_n)^{-1}B_c \\
C_w = \frac{2\alpha}{C_w} C_c(A_c + \alpha I_n)^{-1} \\
D_w = D_c - C_w(A_c + \alpha I_n)^{-1}B_c \\
A_c = \alpha (I_n - A_w)^{-1}(I_n + A_w) \\
B_c = \frac{2\alpha}{C_w} (I_n - A_w)^{-1}B_w \\
C_c = \frac{2\alpha}{C_w} C_c(I_n - A_w)^{-1} \\
D_c = D_w + C_w(I_n - A_w)^{-1}B_w
\]

(16) 式から分かるように、(14) 式または (15) 式の w 演算子
モデルが存在するためには、det(\(A_c + \alpha I_n \)) \neq 0 でなければ
ならない。ゆえに、\(-\alpha \notin \lambda(A_c) \) （ここで、\(\lambda(A) \) は行列の固
有値を表す）が必要である。すなわち、\(-\alpha \) がシステムの一
つの実数値と一致することを避ける必要がある。以下、この
仮定のもとで議論を進める。なお、同定を行うための適切な
\(\alpha \) を選定する方針については、第 5 章で詳しく検討する。

(15) 式に対しても、次の関係を導くことができる。
\[
\begin{bmatrix}
\xi_{0w}(t) \\
\xi_{1w}(t) \\
\vdots \\
\xi_{(i-1)w}(t)
\end{bmatrix}
= \Gamma_i \begin{bmatrix}
\frac{\sqrt{2\alpha}}{P + \alpha} x_w(t) + H_i \xi_{0w}(t) \\
\xi_{1w}(t) \\
\vdots \\
\xi_{(i-1)w}(t)
\end{bmatrix}
\]

(18)

ただし、
\[
H_i = \begin{bmatrix}
D_w & O & \cdots & O \\
C_w B_w & D_w & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
C_w A_w^{i-2}B_w & C_w A_w^{i-3}B_w & \cdots & D_w
\end{bmatrix}
\quad (19)

(21) 式で示されるデータの前処理フィルタ
\[\frac{\sqrt{2\alpha}}{P + \alpha} \left(\frac{p - \alpha}{p + \alpha} \right)^j = \left(\frac{p - \alpha}{p + \alpha} \right)^j \quad (j = 0, 1, \cdots, i - 1) \]

は、近年ノンパラメトリックモデルの同定でよく使われてい
るラグーレルフィルタである。これは、1 次のローパスの項と
j 次のオーバーパスの項から構成されており、そのインパルス
応答は古典的なラグーレルの伝達関数である13)。これまでも、ラ
グーレルフィルタはおもに線形システムの同定問題を中心に研
究されてきたが13),15)。本研究では、データ行列の条件数の改
善という目的でラグーレルフィルタを導入している。入力信号
が低周波領域に集中している場合、\(\alpha \) を適切に選べば、ベク
トル \([\xi_{0w}(t), \xi_{1w}(t), \cdots, \xi_{(i-1)w}(t)]^T \) からなるデータ行列
の条件数が改善できることができる（理論的で示されている）。

ここで提案した w 演算子に基づく方法では、ベクトル
\([\xi_{0w}(t), \xi_{1w}(t), \cdots, \xi_{(i-1)w}(t)]^T \) の各要素における前処理フィルタ
は、\(w = (p - \alpha)/(p + \alpha) \) のべき乗が異なっており、すな
わち、各要素は振幅が変わらないが、位相は \((p - \alpha)/(p + \alpha) \)
のべき乗によってずらされている。したがって、\(\alpha \) を適切に
選定し、ベクトル \([\xi_{0w}(t), \xi_{1w}(t), \cdots, \xi_{(i-1)w}(t)]^T \) のサンプ
ル値からなるデータ行列
4. 部分空間同定アルゴリズム

本章では、部分空間同定法として、Verhaegenらによって提案された MOESP 法（MIMO Output-Error State Space model identification approach）(1)～(4) を (15) 式で表される \(w \) 演算子状態空間モデルの同定に適用する。ここでは、簡単のため、雑音の影響を無視した。しかし、雑音の影響を無視できない場合、補助変数法を適用して、その影響を除去することが可能である。(1)～(4)。

(18) 式を離散化して、フィルタ出力のサンプル値を整理すれば、以下の式が得られる。

\[
Y_{i,N} = I_r X_{w,N}^0 + H_i U_{i,N}
\]

ただし、

\[
Y_{i,N,k} = \begin{bmatrix}
\xi_{00}[k] & \xi_{00}[k+1] & \cdots & \xi_{00}[k+N-1] \\
\xi_{10}[k] & \xi_{10}[k+1] & \cdots & \xi_{10}[k+N-1] \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{(i-1)0}[k] & \xi_{(i-1)0}[k+1] & \cdots & \xi_{(i-1)0}[k+N-1]
\end{bmatrix}
\]

(23)

\[
U_{i,N} = \begin{bmatrix}
\xi_{0u}[k] & \xi_{0u}[k+1] & \cdots & \xi_{0u}[k+N-1] \\
\xi_{1u}[k] & \xi_{1u}[k+1] & \cdots & \xi_{1u}[k+N-1] \\
\vdots & \vdots & \ddots & \vdots \\
\xi_{(i-1)u}[k] & \xi_{(i-1)u}[k+1] & \cdots & \xi_{(i-1)u}[k+N-1]
\end{bmatrix}
\]

(24)

\[
X_{w,N}^0 = [\xi_{0w}[k], \xi_{1w}[k+1], \ldots, \xi_{0w}[k+N-1]]
\]

(25)

\[
\rho \left(\begin{bmatrix}
U_{i,N} \\
X_{w,N}^0
\end{bmatrix} \right) = m_i + n
\]

(26)

ただし、\(\rho() \) は行列のランクを表す。

上記の条件が成立すれば、次の部分空間同定アルゴリズムで (15) 式の \(w \) 演算子状態空間モデルおよび (1) 式の連続時間系の状態空間モデルを同定することができる(1)～(2)。

Step 1 入力信号のデータ行列 \(U_{i,N}, Y_{i,N} \) を作る。ただし、\(i > n \) である。

Step 2 入力信号の行列に対して、LQ 分解を行う。

\[
\begin{bmatrix}
U_{i,N} \\
Y_{i,N}
\end{bmatrix} = \begin{bmatrix}
R_{11} & O \\
R_{21} & R_{22}
\end{bmatrix} \begin{bmatrix}
Q_1 \\
Q_2
\end{bmatrix}
\]

(27)

Step 3 \(R_{22} \) の特異値分解を行う。

\[
R_{22} = \begin{bmatrix}
U_n & U_{n-1} \\
S_n & O
\end{bmatrix} \begin{bmatrix}
V_n^T \\
O
\end{bmatrix}
\]

(28)

Step 4 \((A_w, B_w, C_w, D_w)\) と代数的に等価である推定値 \((A_{wT}, B_{wT}, C_{wT}, D_{wT})\) を、以下の方程式を解くことによって求めめる。

\[
U_n^{(1)} A_{wT} = U_n^{(2)}
\]

(29)

\[
C_{wT} = U_n(1:1,:)
\]

(30)

\[
\Psi_i \begin{bmatrix}
D_w \\
B_{wT}
\end{bmatrix} = \Phi_i
\]

(31)

ただし、

\[
\Psi = \begin{bmatrix}
\Xi(:,1:m) \\
\Xi(:,m+1:2m) \\
\vdots \\
\Xi(:,m(i-1):mi)
\end{bmatrix}
\]

(32)

\[
\Xi = (U_n)^T R_{22} R_{11}^{-1}
\]

(33)

\[
\Psi_i = \begin{bmatrix}
U_n^T((1:1,:)^T) & \cdots & U_n^T((i-1):1,:)^T & O \\
U_n^T((i+1:2,:)^T) & \cdots & O & O \\
\vdots & \ddots & \ddots & \ddots
\end{bmatrix}
\]

(34)

この中、\(U_n^{(1)} \) と \(U_n^{(2)} \) はそれぞれ行列 \(U_n \) の最初の \(i-1 \) 行と最後の \(i-1 \) 行からなる部分列である。

Step 5 (17) 式を用いて、もとの連続時間モデルの等価行列 \((A_cT, B_cT, C_cT, D_c)\) を算出する。

\[
U_{i,N} = R_{11} Q_1 \] がフルランクでない場合、(26) 式のフルランク条件は成立しない。行列の条件数を \(\text{cond}() \) で表すと、\(\text{cond}(R_{11}) = \text{cond}(U_{i,N}) \) が成立するので、同定アルゴリズムの性能は \(\text{cond}(R_{11}) \) に大きく依存する。文献 4) の解析より、\(\text{cond}(R_{11}) \) が比較的大きい場合、同定結果は雑音の影響を受けやすくなる。後に計算結果で示すが、入力が低周
波領域に集中している場合でも、提案した手法における\(\alpha \)を適切に選ばなければならず、状態変数フィルタ1/(\(p/\alpha +1 \))の場合、フィルタの極がシステムの支配極に近いように、\(\alpha \)を選定した方がよいとされている10)。\(w \)演算子を使う場合、システムの極の特性だけでなく、（15）式の\(w \)演算子状態空間モデルの存在条件と最小実現性や安定性を考慮して\(\alpha \)を設定しなければならない。本章では、定数\(\alpha \)とシステムの極との関係を検討する。以上の定数\(\alpha \)を適切に選定する指針を明らかにする。

一般に、高次の方程式は一次方程式に因数分解できるので、ここでは、簡易のため、一般性を失わず、次のような一入出力の二次系に対して、\(\alpha \)とシステムの極との関係を検討する。

\[
G_2(p) = \frac{b_{2,1}p + b_{2,2}}{p^2 + a_{2,1}p + a_{2,2}}
\]

(35)

(12)式の変数を代入すると、次のようになる伝達関数が得られる。

\[
G_2(w) = \frac{\left(\frac{\beta_1}{\alpha_1}w + \frac{\beta_2}{\alpha_2} \right) (1 - w)}{w^2 + \frac{\alpha_1}{\alpha_0}w + \frac{\alpha_2}{\alpha_0}}
\]

ただし,

\[
\begin{align*}
\alpha_0 &= a^2 - a_2,1a + a_2,2 \\
\alpha_1 &= 2(a^2 - a_2,2) \\
a_2 &= a^3 + a_2,1a_2,2 \\
\beta_1 &= \alpha_2,2 - \alpha_2,1 \\
\beta_2 &= \alpha_2,2 + \alpha_2,1
\end{align*}
\]

(36)

w演算子で表される伝達関数が定数\(\alpha \)に依存するが明らかである。そこで、次のような三つの場合について、定数\(\alpha \)による影響を考える。

(1)\(\alpha << a_{2,1},a_{2,2} \)の場合,

\[
\begin{align*}
\alpha_0 &= a^2 - a_2,1a + a_2,2 \\
\alpha_1 &= 2(a^2 - a_2,2) \\
a_2 &= a^3 + a_2,1a_2,2 \\
\beta_1 &= \alpha_2,2 - \alpha_2,1 \\
\beta_2 &= \alpha_2,2 + \alpha_2,1
\end{align*}
\]

(37)

\[
\frac{\left(\frac{\beta_1}{\alpha_0}w + \frac{\beta_2}{\alpha_2} \right) (1 - w)}{w^2 + \frac{\alpha_1}{\alpha_0}w + \frac{\alpha_2}{\alpha_0}} \approx \frac{\left(\frac{\beta_1}{\alpha_0}w + \frac{\beta_2}{\alpha_2} \right) (1 - w)}{w^2 + 2w + 1}
\]

(38)

となる。このことは、\(\alpha \)が\(a_{2,1} \)および\(a_{2,2} \)と比較して極端に小さい場合には\(G_2(w) \)の係数からも\(G_2(p) \)の係数を求めると、誤差に対する感度が高いことを意味する。すなわち、同定された\(w \)演算子状態空間モデルからもとの連続時間系のモデルへの変換はパラメータの推定誤差に敏感である。

(2)の\(\alpha \leq a_{2,1},a_{2,2} \)の場合,

\[
\frac{\left(\frac{\beta_1}{\alpha_0}w + \frac{\beta_2}{\alpha_2} \right) (1 - w)}{w^2 + \frac{\alpha_1}{\alpha_0}w + \frac{\alpha_2}{\alpha_0}} \approx \frac{\left(\frac{\beta_1}{\alpha_0}w + \frac{\beta_2}{\alpha_2} \right) (1 - w)}{w^2 + 2w + 1}
\]

(39)

となる。上式の結果より、\(\alpha \)が\(a_{2,1} \)および\(a_{2,2} \)と比較して極端に小さい場合、ゼロ極根相が起こり、伝達関数の次数が落ちることが分かる。この場合、（15）式の\(w \)演算子状態空間モデルは最小実現形になる。

(3)\((-\alpha)^2 + a_{2,1}(-\alpha) + a_{2,2} \approx 0 \)の場合。

\[
-\alpha \text{が(35)式で表される} \alpha \text{の実数根と近似的に等しくなる。}
\]

(36)式の各係数が非常に大きな値となることが分かる。すなわち、第3章で述べた指摘したように、\(-\alpha \)が定常対象の一つの実数根とは一致する場合、\(w \)演算子状態空間モデルの係数行列の各要素が無限大に近づき、数値上問題となる。

以上の議論により、\(\alpha \)を次のような方法にしたがって選定すれば無難である。

(1)\(\alpha \)がシステムの一つの実数根と一致することを避けるべきである。

(2)\(\alpha \)がシステムの支配極の絶対値と大きく異なることを避けるべきである。

(3)ラゲーフィルタにおける信号の初期値の影響を早く減衰させるため、\(\alpha \)は許される範囲で大きくした方がよい。

実際に、対象が未知であり、事前に適切な\(\alpha \)を選定するのが困難であるので、設計パラメータ\(\alpha \)のいちめんな値に対して同定を行うしかない。そして、同定されたモデルの極が、上記の(1),(2)と(3)の方針を矛盾しなければ、\(\alpha \)が適切であると判断される。後にシミュレーション結果で示すが、提案した方法は、状態変数フィルタに基づく方法より\(\alpha \)の選定が容易である。

6. 数値シミュレーション

本章では、提案した方法と従来のモデル化を用いた間接同定法および状態変数フィルタを用いた直接同定法との比較をシミュレーションを通じて示し、提案した方法の有効性を確認する。

6.1 問題の設定

同定対象は、次のような入力側にゼロ次ホールドが接続された3次の連続時間系とした。

\[
G_c(p) = \frac{b_0p^3 + b_1p^2 + b_2p + b_3}{p^3 + a_1p^2 + a_2p + a_3}
\]

(40)

\[
\theta_c = [b_0,b_1,b_2,b_3,a_1,a_2,a_3] = [0.0,6.0,7.0,8.0,5.0,10.0,8.0]
\]

このシステムの極はそれぞれ、\(-2, -1.5 + 1.3229i \)と\(-1.5 - 1.3229i \)である。

入力信号は2次のパター-ワースフィルタの出力とした。

\[
u(k) = \frac{1}{(p/\omega_c)^2 + \sqrt{2}(p/\omega_c) + 1} \eta(t) \quad (\omega_c = 10)
\]

(41)
Table 1 Results by the indirect method using decimation.

<table>
<thead>
<tr>
<th>DT</th>
<th>$10T$</th>
<th>$12T$</th>
<th>$15T$</th>
<th>$8T$</th>
<th>$2T$</th>
<th>$1T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_0</td>
<td>-9.34337×10^{-3}</td>
<td>-1.1809×10^{-2}</td>
<td>-1.4800×10^{-2}</td>
<td>-2.2594×10^{-2}</td>
<td>-2.5676×10^{-2}</td>
<td>1.3401×10^1</td>
</tr>
<tr>
<td>b_1</td>
<td>1.0017×10^{-2}</td>
<td>1.1098×10^{-2}</td>
<td>1.1989×10^{-2}</td>
<td>2.0574×10^{-2}</td>
<td>2.7905×10^{-2}</td>
<td>8.8276×10^1</td>
</tr>
<tr>
<td>b_2</td>
<td>6.7874×10^{-6}</td>
<td>6.5939×10^{-6}</td>
<td>6.4904×10^{-6}</td>
<td>6.4193×10^{-6}</td>
<td>6.2668×10^{-6}</td>
<td>2.2484×10^1</td>
</tr>
<tr>
<td>b_3</td>
<td>7.1402×10^{-6}</td>
<td>7.2066×10^{-6}</td>
<td>7.2057×10^{-6}</td>
<td>7.1126×10^{-6}</td>
<td>7.2682×10^{-6}</td>
<td>9.3024×10^1</td>
</tr>
<tr>
<td>b_4</td>
<td>3.0045×10^{-10}</td>
<td>1.2052×10^{-10}</td>
<td>7.5580×10^{-10}</td>
<td>2.7514×10^{-10}</td>
<td>2.0572×10^{-10}</td>
<td>4.8081×10^1</td>
</tr>
<tr>
<td>b_5</td>
<td>8.8335×10^{-7}</td>
<td>7.7692×10^{-7}</td>
<td>7.1287×10^{-7}</td>
<td>7.2680×10^{-7}</td>
<td>6.7999×10^{-7}</td>
<td>1.1470×10^1</td>
</tr>
<tr>
<td>b_6</td>
<td>1.0105×10^{-10}</td>
<td>1.0311×10^{-11}</td>
<td>1.0110×10^{-11}</td>
<td>1.0096×10^{-11}</td>
<td>1.0083×10^{-11}</td>
<td>2.2476×10^1</td>
</tr>
<tr>
<td>b_7</td>
<td>8.7030×10^{-10}</td>
<td>8.5600×10^{-10}</td>
<td>8.3215×10^{-10}</td>
<td>8.1981×10^{-10}</td>
<td>8.2518×10^{-10}</td>
<td>4.1221×10^1</td>
</tr>
<tr>
<td>b_8</td>
<td>5.4167×10^{-11}</td>
<td>5.9311×10^{-11}</td>
<td>5.8504×10^{-11}</td>
<td>5.9971×10^{-11}</td>
<td>6.0504×10^{-11}</td>
<td>9.8370×10^1</td>
</tr>
<tr>
<td>$\text{cond}(R_{11})$</td>
<td>1.4867×10^2</td>
<td>2.8763×10^2</td>
<td>2.5947×10^2</td>
<td>4.0953×10^2</td>
<td>1.2587×10^3</td>
<td>5.1182×10^4</td>
</tr>
</tbody>
</table>

ただし、$\eta(t)$ は離散値白雑音である。

$$\eta(t) = \eta(k), \quad kT \leq t < (k+1)T \quad (42)$$

このフィルタは双一次変換によって離散化される。

同定に最適なサンプリング周期は事前に分からないので、文献 8) で主張されたように、サンプリング周期を短く、$T = 0.01$ とした。同じ入力信号に対して、雑音信号比（Noise/Signal Ratio, NSR）が NSR ≈ 10% となる白雑音離散雑音の初期値を変えて、20 つの出力データを用意した。ただし、データのサンプル数を 1500 とした。各手法の比較のために、同定に当たって、システムの次数を既知とした。

6.2 デジタルフィルタを用いた間接同定法による同定結果

まず、デジタルフィルタを用いた間接同定法について検討した。ただし、$i = 30$ とした。デジタルフィルタ操作は matlab の同定ツールボックスの idresamp という関数を利用した。同定できた離散時間モデルを連続時間モデルへ変換するときの idresamp の関数 $d2cm$ を利用した。$d2cm$ の使用にあたって、変換方法を 'tustin'（双一次変換）と指定した。デジタルフィルタ処理を行った場合、ゼロパラメータ入力という仮定が成り立とうなくないことが理由である。$D = 1, 4, 8, 10, 12, 16$ という倍率でデジタルフィルタ処理を行ってから同定した結果を Table 1 にまとめた。Table 1 の各欄の上段および下段は、それぞれ関数の平均値と標準偏差を表す。さらに、RRSE (Relative Root Square Error) は $\text{RRSE} = || \hat{\theta} - \theta_p ||_2 / || \theta ||_2$ と定義されている。

Table 1 からわかるように、サンプリング周期が小さい場合、行列 R_{11} の条件数が非常に小さく、推定結果は雑音の影響に敏感である。デジタルフィルタ処理を行ってから同定すれば、同定精度は大幅に向上した。デジタルフィルタの入力を大きくなると、同定精度を大きくすることができる。この結果は、次のような解釈される。もとの細長いサンプリング周期

$$T = 0.01$$

でゼロパラメータ入力をシステムに入力したにもかかわらず、長いサンプリング周期 DT でデジタルフィルタ処理を行った場合、ゼロパラメータ入力という仮定が成立しなくなる。この場合、サンプリング周期が大きいと、離散時間モデルの近似誤差も増大していく。したがって、Table 1 に示された結果から分かるように、デジタルフィルタ処理の手段を用い、同時に各条件が改善され、同定精度も向上したが、離散時間モデルの近似誤差も増えてくるので、結果同定誤差の低減には限度がある。

6.3 状態変数フィルタを用いた直接同定法による同定結果

次に、状態変数フィルタを用いた間接同定法を検討した。この方法および後述の w 演算子に基づく方法のいずれにおいても、同定変換を行ってフィルタを離散化した。ただし、初期値の影響を考慮して、前処理フィルタで処理された後、最初の 500 組のデータを無視し、残りの 1000 組のデータを使って同定を行った。

$i = 4$ および $i = 8$ の場合に対して、状態変数フィルタを用いた直接同定法による同定結果をそれぞれ Tables 2, 3 にまとめた。Table 2 により、パラメータの推定結果が状態変数フィルタの定数 α の選び方に敏感であることがわかる。パラメータの推定誤差は小さい方は $\alpha = 2$ の場合のみである。また、Table 3 により、$i = 7$ が比較的大きい場合、行列 R_{11} の条件数が非常に大きくなり、推定結果も著しく劣化していることが確認できる。この結果より、状態変数フィルタを用いた直接同定法が数値の高いシステムの同定に向きであることがいえる。

6.4 w 演算子に基づく方法による同定結果

$i = 4$ および $i = 8$ の場合に対して、提案した w 演算子に基づく方法による同定結果をそれぞれ Tables 4, 5 にまとめた。Table 4 により、比較的広い範囲の α の値に対して、システムパラメータが精度よく推定されていることがわかる。再び、推定誤差が状態変数フィルタを用いた同定法の場合よりも小さいことも確認できる。しかしながら、$\alpha = 2$ の場合、推定結果が極端に悪いことが確認されている。この場合、w 演算子の値がシステムの一つの実数値と一致していることに注意される。
Table 2 Results by the state variable filter (i = 4).

<table>
<thead>
<tr>
<th>α</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>b₀</td>
<td>-4.6346 x 10⁻²</td>
<td>-3.480 x 10⁻²</td>
<td>-3.3616 x 10⁻²</td>
<td>-3.8931 x 10⁻²</td>
<td>-8.4166 x 10⁻²</td>
<td>-1.0337 x 10⁻²</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Results by the state variable filter (i = 8).

<table>
<thead>
<tr>
<th>α</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>b₀</td>
<td>7.0559 x 10⁻¹</td>
<td>5.8946 x 10⁻¹</td>
<td>7.3744 x 10⁻¹</td>
<td>1.2450 x 10⁰</td>
<td>1.4660 x 10⁰</td>
<td>9.5894 x 10⁻¹</td>
<td></td>
</tr>
<tr>
<td>b₁</td>
<td>4.9622 x 10⁻¹</td>
<td>1.4332 x 10¹</td>
<td>3.1790 x 10⁰</td>
<td>2.4876 x 10⁰</td>
<td>9.2089 x 10⁻¹</td>
<td>7.0320 x 10⁰</td>
<td></td>
</tr>
<tr>
<td>b₂</td>
<td>1.1555 x 10⁻¹</td>
<td>2.9333 x 10⁰</td>
<td>5.4237 x 10⁻¹</td>
<td>2.0799 x 10⁰</td>
<td>2.2088 x 10⁰</td>
<td>9.8702 x 10⁻¹</td>
<td></td>
</tr>
<tr>
<td>b₃</td>
<td>2.1543 x 10⁻¹</td>
<td>1.3592 x 10²</td>
<td>1.3398 x 10¹</td>
<td>2.9721 x 10¹</td>
<td>3.3451 x 10¹</td>
<td>2.8134 x 10³</td>
<td></td>
</tr>
<tr>
<td>b₄</td>
<td>6.3990 x 10⁻¹</td>
<td>2.3790 x 10¹</td>
<td>4.3768 x 10⁰</td>
<td>2.1261 x 10⁰</td>
<td>6.6422 x 10⁰</td>
<td>7.4738 x 10³</td>
<td></td>
</tr>
<tr>
<td>b₅</td>
<td>1.7463 x 10⁻¹</td>
<td>8.5120 x 10⁰</td>
<td>2.0421 x 10⁰</td>
<td>5.3575 x 10⁰</td>
<td>4.5362 x 10⁰</td>
<td>1.0674 x 10³</td>
<td></td>
</tr>
<tr>
<td>b₆</td>
<td>9.3502 x 10⁻¹</td>
<td>9.8087 x 10¹</td>
<td>1.5200 x 10²</td>
<td>1.8937 x 10²</td>
<td>9.1175 x 10⁰</td>
<td>7.8195 x 10³</td>
<td></td>
</tr>
<tr>
<td>b₇</td>
<td>5.7366 x 10⁻¹</td>
<td>6.4640 x 10²</td>
<td>3.5106 x 10³</td>
<td>1.4768 x 10⁵</td>
<td>1.2795 x 10⁵</td>
<td>2.1377 x 10⁶</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Results by the w-operator (i = 4).

<table>
<thead>
<tr>
<th>α</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>b₀</td>
<td>-4.7713 x 10⁻²</td>
<td>-3.4486 x 10⁻²</td>
<td>-3.0622 x 10⁻²</td>
<td>-3.0061 x 10⁻²</td>
<td>-3.0702 x 10⁻²</td>
<td>-3.1677 x 10⁻²</td>
<td></td>
</tr>
<tr>
<td>b₁</td>
<td>6.1878 x 10⁻¹</td>
<td>5.9773 x 10⁰</td>
<td>5.9538 x 10⁰</td>
<td>5.9543 x 10⁰</td>
<td>5.9615 x 10⁰</td>
<td>5.9694 x 10⁰</td>
<td></td>
</tr>
<tr>
<td>b₂</td>
<td>6.7992 x 10⁻¹</td>
<td>-2.0003 x 10²</td>
<td>7.0598 x 10⁰</td>
<td>7.0581 x 10⁰</td>
<td>7.0606 x 10⁰</td>
<td>7.0604 x 10⁰</td>
<td></td>
</tr>
<tr>
<td>b₃</td>
<td>8.6357 x 10⁻¹</td>
<td>-4.4327 x 10⁰</td>
<td>8.0375 x 10⁰</td>
<td>8.0140 x 10⁰</td>
<td>8.1779 x 10⁰</td>
<td>8.6576 x 10⁰</td>
<td></td>
</tr>
<tr>
<td>b₄</td>
<td>5.2124 x 10⁻¹</td>
<td>5.0337 x 10¹</td>
<td>5.0007 x 10⁰</td>
<td>4.9969 x 10⁰</td>
<td>5.0115 x 10⁰</td>
<td>5.0308 x 10⁰</td>
<td></td>
</tr>
<tr>
<td>b₅</td>
<td>2.7066 x 10⁻¹</td>
<td>1.6110 x 10²</td>
<td>1.2741 x 10¹</td>
<td>1.2741 x 10¹</td>
<td>1.8701 x 10¹</td>
<td>6.4291 x 10¹</td>
<td></td>
</tr>
<tr>
<td>b₆</td>
<td>5.5786 x 10⁻²</td>
<td>2.7006 x 10²</td>
<td>6.9474 x 10⁰</td>
<td>6.4699 x 10⁰</td>
<td>5.1056 x 10⁰</td>
<td>5.1046 x 10⁰</td>
<td></td>
</tr>
<tr>
<td>b₇</td>
<td>1.7084 x 10⁰</td>
<td>1.3164 x 10⁰</td>
<td>1.4939 x 10⁰</td>
<td>1.7513 x 10⁰</td>
<td>2.3333 x 10⁰</td>
<td>4.1446 x 10⁰</td>
<td></td>
</tr>
</tbody>
</table>
つも大いに，iとシステムの次数nとの差が大きくなると，システムのゼロ点の推定結果が劣化することがあることを確認した。その現象のメカニズムと対策方法を理論的に明らかにするのが今後の課題となる。まず，システムの構造と極が共定できれば，ゼロ点などは従来の出力誤差法などで精度よく推定できるので，この欠点は致命的ではない。また，システムの構造と極が共定できれば，iを設定し直して，部分空間同定をもう一回実行してもよい。筆者の経験では，データセレクションを用いた間接法による共定では，$i = 20\sim 30$と大きく，連続時間モデルの共定では，iを小さくした方が無駄である。

7. 結わりに

本論文では，演算子$w = (p-a)/(p+a)$を導入し，w演算子空間モデルに基づく部分空間同定法を提案した。w演算子の定数aを選定する指針についても考察した。提案した手法とアンメーションを用いた関接同定法および状態変数フィルタを用いた直接同定法を比較し，シミュレーションを通して，提案した手法の有効性および応用上の注意事項を明らかにした。本論文の査読期間中に，著者の研究と独立に，w演算子による連続時系の部分空間同定法が発表された17)，18)，文献17)，18)が補助変数法による雑音の影響の除去に重点をおいたのでに対して，本論文が各方法の比較検討を中心に議論を展開していることを記しておく。

参考文献

8) 足立修一：ユーザーのためのシステム同定理論，計測自動制御学会，137-140(1993).
【著者紹介】

橋子江（正会員）

1992年3月九州大学大学院工学研究科電気工学専攻博士課程修了。同年4月九州工業大学助手。1996年4月同大学情報工学部助教授。現在に至る。システム同定およびそれに関連する信号処理、遺伝的アルゴリズム、ニューラルネットワーク、ウェーブレット解析、モーションコントロールなどの研究に従事（工学博士）。システム制御情報学会、電子情報通信学会、電気学会、ロボット学会、日本機械学会会員。