皮膚軟部組織モデル化のための生体定数

岡 久 雄
入 江 隆

1. はじめに
生体表面の力学的挙動を数値解析的にシミュレートするためには、例えば皮膚の各層（表皮や真皮、筋肉や脂肪、骨など）の生体定数や運動方程式、境界条件が必要である。これらの生体定数には、個々にin vitroで測定された数値を用いる場合もあるが、一般に不均質で非線形、異方性や周波数依存性を持ち、複雑な階層構造を有する皮膚軟部組織では、in vivoで測定された生体定数が必要となる。しかしこれまでの報告例では、測定法が異なれば、異なる生体定数が得られる場合もあり、測定法が必要なポイントとなる。

本稿では、バイオメカニズム学会誌Vol.16、No.3「特集 人体のモデル化とシミュレーション」の「皮膚力学性の計測とその評価」に基づき、これまでに報告されている皮膚軟部組織の生体定数（動物は除く）の幾つかを、単なる指標ではなく、工業的単位など物理的意味の明らかなるものを測定法別に述べる。

2. 静的計測法による生体定数
生体の硬さにあらわる力学的状態を測定するには、医師やその必要のある人が行っている触診が最も簡便であるが、触診、圧診などでは比較的ゆっくりと指を動かして診断している。すなわち軟組織の硬さを調べる場合には、指によら力とその変形量から判断している。従って、軟組織の力学性を求める際には、まず静的測定法すなわちstress-strain計測法が考えられるが、in vitroとin vivoに分けて述べる。

2.1 in vitroでの生体定数
表1はin vitroの試料に対し、stress-strain計測法によって求められた生体定数である。同表の生体定数はすべてヤング率に関する値である。M.E事典、藤原、Rollhäuserは、切り出した皮膚及び筋の引張強度（破壊強度）を求めるが、皮膚は筋に比べて10～100倍以上の強度を持っていることがわかる。

Rollhäuserは年齢による皮膚（腹部）の弾性係数変化を調べ、加齢による硬さの様子を明らかにした。また杉本は集束超音波の放射圧を用い、生体内組織に12mmφのステンレス加圧棒を用いて微小な変形を与え、その時間的緩和の様子をパルスエコー法によって計測する方法により、肝臓の緩和弾性率を求めている。

2.2 in vivoでの生体定数
表2はin vivoのstress-strain計測法により、生体定数を得ている例である。数値は弾性係数であり、物理的意味の多少異なるものの、粘性に関するもの、次元の異なるもののについてはそれらを付記した。Jagtmann、Sanders、Grahamらは、異なる3方法によってそれぞれ大きく異なる数値を得ている。これは計測方法及び測定条件が、如何に大きく生体定数に関与するかを示すものである。

吉川は、測定対象に空気圧を用いてステップ荷重を加え、そのstress-strain曲線から生体定数を算出している。パネ定数は整定時の反力と押し込み量から計算し、最小二乗法で曲線近似を行い、立ち上がり方を構造抵抗を求めている。接触子は外径35mmの円盤状のものを用いているが、これに対し、高谷らと本田は、球状の接触子を用いている。高谷らが開発した計
表1 静的計測（stress-strain法による生体定数（in vitro）

<table>
<thead>
<tr>
<th>計測方法・測定条件</th>
<th>測定対象と生体定数（N/m²）</th>
<th>実験者・紹介者</th>
</tr>
</thead>
<tbody>
<tr>
<td>引張強度（縦横方向の平均値）</td>
<td>皮膚（頭部）：4×10⁶ 皮膚（額）：5.1×10⁶ 皮膚（眼）：3.8×10⁶ 皮膚（頬）：6.2×10⁶ 皮膚（上腕）：1.1×10⁷ 皮膚（前腕）：1.2×10⁷ 皮膚（手掌）：8.7×10⁶ 皮膚（頬）：6.3×10⁶</td>
<td>医学電子生体工学ME事典（1978）</td>
</tr>
<tr>
<td>最大引張強度（破壊強度）</td>
<td>皮膚（胸郭、首）：1.3×10⁷ 皮膚（腹部、背中、上腕、足）：9.5×10⁶ 皮膚（下腿部、手）：8.2×10⁶ 皮膚（顔、頭、生殖器）：3.7×10⁶ 骨格筋（腹部直筋、心筋）：1.1×10⁷</td>
<td>藤正（1975）</td>
</tr>
<tr>
<td>引張強度、破壊強度</td>
<td>皮膚（腹部）（生後7カ月～3歳）：2.8×10⁷（15歳～30歳）：6.6×10⁷（30歳～50歳）：7.9×10⁷（50歳～80歳）：1.1×10⁷</td>
<td>Rollhäuser（1950）</td>
</tr>
<tr>
<td>一定変位に対する荷重の時間的変化を測定</td>
<td>肝臓：8.9×10⁷～2.1×10⁸</td>
<td>杉本ら（1991）</td>
</tr>
</tbody>
</table>

表2 静的計測（stress-strain法による生体定数（in vivo）

<table>
<thead>
<tr>
<th>計測方法・測定条件</th>
<th>測定対象と生体定数（N/m²）</th>
<th>実験者・紹介者</th>
</tr>
</thead>
<tbody>
<tr>
<td>parallel</td>
<td>二つの接触子を皮膚に張付け、一定荷重で両側に引張る。変位を測定。</td>
<td>皮膚：2.0×10⁶</td>
</tr>
<tr>
<td>torsional</td>
<td>円盤を皮膚に張付け、一定トルクで回転。角度を測定。</td>
<td>皮膚：2.0×10⁴</td>
</tr>
<tr>
<td>perpendiccular</td>
<td>吸引カップにより皮膚を一定圧で吸引、変位を測定。</td>
<td>皮膚：1.8×10⁷</td>
</tr>
<tr>
<td></td>
<td>円盤状接触子。一定荷重で、押し込み量と反力を測定。</td>
<td>前腕：4.5×10⁵～9.0×10⁵（パネ定数、N/m） 1.0×10⁶～6.0×10⁵（機械抵抗、Ns/m）</td>
</tr>
<tr>
<td></td>
<td>球状接触子。荷重印加速度を一定（3g/sec）にし、力と変位を測定。</td>
<td>前腕橈骨筋（正常）：2.9×10⁸～4.9×10⁹（弾性指標）（浮腫）：1.2×10⁹～2.5×10⁹（弾性指標）</td>
</tr>
<tr>
<td></td>
<td>球状接触子。加圧制御は行われず、力と変位を測定。</td>
<td>上腕二頭筋：3.2×10⁹（弾性指標） 3.6×10⁹（粘性係数、Ns/m） 前腕橈骨筋：3.9×10⁹（弾性指標） 2.8×10⁹（粘性係数、Ns/m） 長掌骨筋：5.2×10⁹（弾性指標） 1.6×10⁹（粘性係数、Ns/m） 拇指球：4.2×10⁹（弾性指標） 2.1×10⁹（粘性係数、Ns/m）</td>
</tr>
</tbody>
</table>
測システムを図1に示す。直径4mmの鋼球を介して生体表面に一定的速度（3g/sec）で荷重を加え、変位と荷重を検出して記録している。同表に示されている数値は、次式に示す弾性指標N [N/m²] であり、ヤング率に対応した数値となる。

\[N = \frac{E}{1 - \lambda^2} \] (1)

ここでEはヤング率 [N/m²]、 \(\lambda \) はポアソン比である。前腕検骨筋において正常な場合と浮腫の場合のNを求めている。本表は、高谷らとほぼ同様の計測法で、手部における粘弾性特性を求めており、1/Nを弾性指標としているが、高谷らの結果と比較するために、同表にはNを示した。前腕における測定結果を比較すると、その数値には約10倍の開きがある。これは高谷らが直径4mm、本田が10mmの鋼球を接触子として用いたためであろう。さらに高谷らは荷重速度一定で（10〜30gf）測定を行っているが、本田は測定の簡便さを優先して荷重（〜1000gf）、変位に対する制御を行っていないなど測定条件にも違いがある。

3. 動的計測法による生体定数

低周波振動を与えて、その応答から生体定数を算出する動的計測法は、静的計測法に比べ、測定中の生体の不随性な動きによる影響を受けにくいことから、in vivoにおける報告例が多い（表3）。

Christensenらは図2に示すような計測システムを用い、1及び2Hzのparallelな振動を加えて荷重−変位リサーチを描き、in vitro及びvivoの乾燥皮膚やichthyoticな皮膚のヤング率に相当するDSR（dynamic spring rate）を求めている（12）。直径2mm、厚さ0.5mmのプラスチック円盤のプローブによって測定部位にparallelな方向の振動を加えるが、接触力が約5gfで皮膚表面の変位が約3〜4mmとなる。駆動力と変位でリサーチを描くと、その傾きがDSRとなる。

大野はバイプロメータを用いて胸壁の機械インピーダンスを測定している（13）。さらに池谷らは図3に示すような動電駆動−静電測定のバイプロメータを提案し、同じく胸壁の機械インピーダンスを測定している（14）。池谷らは測定された胸壁の機械インピーダンス周波数特性を質量、スチフネス、機械抵抗の直列回路で近似し、同表に示すように各パラメータを算出した。質量は3.2〜3.4gとほとんど変化していない、スチフネスについてみると、大野と池谷らの結果は計

<table>
<thead>
<tr>
<th>表3 動的計測（vibration）法による生体定数</th>
</tr>
</thead>
<tbody>
<tr>
<td>計測方法</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>parallel</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>perpend</td>
</tr>
<tr>
<td>dicular</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
測法が類似していること、測定部位が同じであることなどからよく似た値となっているが、
Christensenらは非常に低い周波数（1Hz及び2Hz）の振動でparallelな方向に加えるという計測
法の違い、測定部位の違いなどから大野、池谷らの求めた生体定数の10~100分の1となっている。

図2 Cristensenらの計測システム

図3 池谷らの計測システム

4. 機械インピーダンスによる粘弾性係数
著者らは図4に示すラマンダ振動を用いた
生体機械インピーダンス計測システムを開発
し、インピーダンスの測定を行ってきた。振動
子を生体表面に押し当て、ラマンダ振動（30~
1000Hz）を加え、接触力が一定のときの駆動点
における駆動力及び加速度を検出し、次式に
よって機械インピーダンスZ(ω)を算出する。

\[
Z(\omega) = \frac{F(\omega)}{V(\omega)} = \frac{\omega F(\omega)}{A(\omega)}
\] \hspace{1cm} (2)

ここでA(ω), V(ω), 及びF(ω)は、それぞれ加速度、速度、駆動力のフーリエ変換である。
ラマンダ振動を用いることにより、短時間（数
秒）測定が可能で、振動子の大きさ及び接触力
は容易に変更できる。図5に前腕で得られた機械
インピーダンスの周波数特性を示すが、一般化
生体機械インピーダンスは、周波数特性の
特徴から三種類（軟・中間・硬部位特性）に分
類できる。ここでは、軟部位特性（機械抵抗
の周波数特性が単調増加）を示す機械インピー
ダンスに対して、粘弾性係数を決定する方法を
述べる。均一で無限な粘弹性媒質中の振動球に
に対するインピーダンスZ(ω)は、次の式で表される。

\[
Z(\omega) = \frac{1}{2} \left[6m^2 \sqrt{\frac{\rho(\mu_1^2 + \omega^2 \mu_2^2 + \mu_3)}{2}} + 6m\mu_2 + j\omega \left(\frac{2m^3 \rho}{3} \right)
\]

\[
+ j6m^2 \sqrt{\frac{\rho(\mu_1^2 + \omega^2 \mu_2^2 - \mu_3)}{2}} + 6m\mu_1 \right]
\] \hspace{1cm} (3)

ここでμ₁ [N/m²] はずれ弾性係数、μ₂ [Ns/m²] はずれ粘性係数、a [m] は振動球の半径、ρ
[kg/m³] は媒質密度である。本法では生体表面
から加振を行うので、（3）式に示すように1/2
を乗っている。この式は軟部位特性を表すことも
できるが、生体の組織構造の影響を受けた
ような中間、硬部位特性には適用できない、得
られた機械インピーダンスに対して、ρを一定
（1100kg/m³）とし、カーブフィッティングを行
ってμ₁、μ₂及びa（ここでは振動の伝搬範囲と
いう意味で可変とした）を決定する。同図の破
線はフィッティング曲線である。また表4に、直径10mmの円盤振動子を使って、接触力30gfで測定したときの粘弾性係数を示す。Gierkeらは上腕で\(\mu_1 = 2500, \mu_2 = 15 \)（振動子直径26mm、接触力100g）という数値を得ている。

表4 生体各部位の粘弾性係数

<table>
<thead>
<tr>
<th>測定部位</th>
<th>(\mu_1) (N/m²)</th>
<th>(\mu_2) (N/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>頚</td>
<td>5053</td>
<td>63.4</td>
</tr>
<tr>
<td>上腕部</td>
<td>5280</td>
<td>13.4</td>
</tr>
<tr>
<td>胸部</td>
<td>9436</td>
<td>15.9</td>
</tr>
<tr>
<td>腹部</td>
<td>8268</td>
<td>18.1</td>
</tr>
<tr>
<td>背中</td>
<td>6782</td>
<td>19.5</td>
</tr>
<tr>
<td>ふくらはぎ</td>
<td>6905</td>
<td>10.1</td>
</tr>
</tbody>
</table>

図8 加速度応答波形（距離が異なる場合）

図9 表面波の伝播速度

5. 衝撃応答法による生体定数

衝撃入力を用いた計測法としては、振子式のアームを用いて生体表面にステップ荷重を加え、接触部分の減衰振動波形から静的・動的パネ定数を求める報告がある19)。著者からは、インパクトハンマーと小型加速度計からなる衝撃応答計測システムを開発し、生体表面における衝撃波動の伝播特性を調べた20)。

図6に衝撃応答計測システムを示す。重さ0.65gの小型加速度センサを生体表面に接着し、実験者がインパクトハンマーを用いて衝撃入力を加える。入力点と加速度検出点の距離を1cmとし、上腕と膝で測定したときの衝撃入力及び加速度応答波形を図7に示す。時間軸の0は入力が加えられた瞬時である。硬い部位ほど衝撃入力波形の荷重時間は短く、また波高値は高くなるが、加速度応答波形の振動継続時間、振動周期は短くなった。

次に前腕、大腿部及び膝における衝撃波動の伝播特性を調べた。加速度検出点は固定しておき、衝撃入力点を1cmから5cmまで、1cmずつ遠ざけて測定を行った。距離が1cm、3cm、及び5cmの場合の加速度応答波形（前腕）を図8に示す。衝撃入力波形は絶えず一定となるよう注意して行った。図9は加速度応答波形の最初に区分極大値をとる時間を横軸に、距離を縦軸に示したものであるが、実線は回帰直線で、直線の傾きが波動の伝播速度を表している。その結果、前腕、大腿部及び膝での伝播速度は、それぞれ2.96m/s、2.34m/s、6.35m/sであったが、Gierkeらは大腿部での表面波伝播速度（64Hz、振動子表面積5.3cm²で実験）は1.6m/sと報告している21)。

6. おわりに

これまでに報告されている生体定数は、皮膚軟部組織が弾性挙動を示すので、その測定法や測定条件に依存することが多く、異なる数値が報告される場合もあった。今回は生体の数値に限定したが、静的測定法によって得られたものが多い。今後、動的測定法や衝撃応答法によって、さらに多くの生体定数が得られることを期待する。

参考文献
1) 岡久雄：皮膚力学特性の計測とその評価，バイオメカニズム学会誌，16(3)，181-187 (1992)
2) 日本エム・アイ学会編：医用電子生体工学MB事典，638，コロナ社 (1978)
3) 藤正厳：人体軟組織の計測と硬さ測定，計測と制御，14(3)，249-253 (1975)
4) H. Rollhäuser：Die Zugfestigkeit der menschlichen Haut, Gegenbaurs morphol. Jahrb, 90, 249-
5) 杉本恒美, 上羽貞行, 伊東経一：緩和弾性率を用いた生体組織の硬さの一評価法－計測理論とin vitroモデル実験による検討－, 医用電子と生体工学, 29 (4), 269-275 (1991)
9) 吉川純生：皮膚の力学的挙動と計測法，計測と制御，14 (3), 254-262 (1975)
10) 高谷治, 赤塚孝雄：生体の硬さの臨床的測定法，計測と制御，14 (3), 281-292 (1975)
11) 本田貞：皮膚筋系静的硬度測定装置の開発ならびに応用に関する基礎的研究，日衛誌，45 (4), 860-872 (1990)
13) 大野寿彦：負荷による胸壁の機械インピーダンスの変化，日本音響学会誌，23 (1), 12-19 (1967)
14) 池谷和夫, 鈴村宣夫, 松久敬一：動電駆動, 静電測定のバイブロメータによる胸壁インピーダンスの測定，医用電子と生体工学，5 (5), 345-351 (1967)
20) 入江隆，岡久雄，山本辰馬：衝撃応答法による生体表面の力学特性の計測，信学論，J75-D-II (4), 199-807 (1992)