理学療法学科における運動学とバイオメカニクス教育

大渕修一*

はじめに
この稿を作るにあたって困ったことは、“運動学とはなにか”について、筆者の中で整理されて
いないかったことである。運動学の教育を担当して数年が経つが、これまでは運動学とバイオメカニクスを明確に区別したことは無
かった。運動学を担当する理学療法教員がこのように不
見識とは思わされないが、教員の多くはバイオメカニクスに関する
理解が十分にあるとは言えないかもしれない。この点の依頼
状にもわずらいびバイオメカニクスの定義が添えられていること
からも、理学療法分野における理解の不足さが窺える。

本誌などのバイオメカニクス関係の雑誌を拝読すると、昨今
のバイオメカニクス領域の発展には目を見張るものがあり、理
学療法学科におけるこの領域の教育はますます重要になってく
るものと感じられる。その一方で、あまりの発展ゆえに理学療
法学科の教育にバイオメカニクス教育を取り入れるのが難しく
なってしまうように思える。

そこで、バイオメカニクスの専門家に現在の理学療法学科に
おける教育の現状を報告し、これからの教育プログラムの作成
に助言を頂ければと思うこの稿を始めめる。

運動学とバイオメカニクス

運動学とは“運動を研究する学問”である1、一方、バイオ
メカニクスは“人間（及び動物）の運動を力学的な観点から研究
する学問”である。この定義からするとバイオメカニクスは運動
学の中的一の要素といえる。つまり運動学は力学的観点の
みならず、心理的、社会学的観点などの運動に関連する諸因
子を含むと考えられ、バイオメカニクスを含んだ身体運動に関
する包括的な概念と言えることができる。しかし、運動学に
を含む学問としてのバイオメカニクスが運動学とは別の
形で発展してきているとの記述もあり、似た領域を扱う別の
学問と考えることもできる。また、Nigg2によるバイオメカニク
スの歴史に関する記述は、運動学とバイオメカニクスが同意語
ということもとれる。この運動学とバイオメカニクスとの関
係性については、私の力に余るものがあるので問題を提起して

割愛する、便宜的に、ここでは運動学の中の力学に関する部分
をバイオメカニクスとする。

理学療法学科における運動学とバイオメカニクス教育

理学療法士・作業療法士法によれば、理学療法とは“身体に
障害のあるものに対し、主としてその基本的動作能の回復を
測るため、治療採択その他の運動を行わせ、及び電気刺激、マッ
サージ、温熱その他の物理的手段を加えることをいう”とある。
つまり、治療方法には幾つかの種類があるが、いずれの治療手
技を選択したとしても、最終的には運動能力の回復をめざし
ていることができる。治療計画の立案や、治療果の検討は
身体運動の分析などには成り立たない。従って、理学療法教
育の中で、バイオメカニクスを含む運動学教育はその根幹をな
す教科の一つと考えられている。

運動学と一口で言ってもその範疇は広い、効果器としての筋
や骨の力学的系、力を発生させるためのエネルギー代謝系、運
動を起こす意欲を発揮する心理系、これらの意欲を効果器に伝
える神経系など多くの要素が含まれる。現在の理学療法学科に
おける運動学教育は、これら全てを盛り込んだ欲張った内容に
なっている。理学療法学科のうちの多くは運動学に使
われているが、それでも先に挙げた全てを教育とするとそれ
ぞれが表面的なものにすぎなさるを得ない。限られた時間の中
にこれら全てを盛り込むのは難しく時間配分が苦労する、し
かし、運動学を“運動を研究する学問”と包括的にとらえる
と、運動を分断した個々の機能として扱う。これらの機能を
“統合した系”として扱うのが本質的であり、盛りだくさん
の授業内容になることは仕方のないことであろう。

北里大学のカリキュラムでは、講義の時間数の約3分の1を
機能解剖学、3分の1を運動学にあて、残った3分の1を
バイオメカニクスと運動学習に充てている。歴史的に理学療法
学科では、機能解剖学（それにまつわる静力学）と運動生理学の
教育に重点がおかれているが、現在でも両分野に偏った時間配分
となっている。結果的にバイオメカニクスの教育は3分の1を
さらに半分で、今日のバイオメカニクス研究に見られる動
力学、関節の運動学、サーチング学などに触れることはあまり
少ない時間となっている。国際試験における機能解剖学、運動
生理学の出題も多く、劇的な時間配分の変更は難しい。

時間的な制約をもたすことから、高校教育での物理学あるいは
応用数学の履修状況の変化をバイオメカニクス教育を妨げる
因子となっている。現在の高校教育では、物理は選択とされて
おり、場合によっては物理を全く取らなくても卒業できること

1998年5月6日受付
＊北里大学医療衛生学部 理学療法学科
〒228-8555 神奈川県相模原市北里1-15-1

キーワード：理学療法教育、バイオメカニクス、キネシオロジー

NII-Electronic Library Service
もある。結果的に、中学レベルの物理の知識しか持たず、バイオメカニクスで使われる力学が理解されていない学生が生じる。この傾向は私立大学で顕著である。私立大学では受験科目を少なくする傾向があり、理学療法のように物理の基礎をおく学問であっても入試でその能力を測られることがある場合も容易に想像される。このような状況では、何らかの補講なしには一般的な講義形式によるバイオメカニクスは理解され難しいものと考えら

この状況を打破する一つの方策として、多くの理学療法学科では運動学実習のほとんどを使ってバイオメカニクスを扱う。バイオメカニクスを実習を通じて体験してもらうのが教育目標となっている。この方法は、力学の基礎知識がありませんものでも、現実的な問題解決手段としての応用力学を体験することができ、さらに進行にあわせて補助資料の提示によって、興味のある学生は体験した現象と力学の原理を関連づけて学習することができる利点を持っている。実習は知識レベルのみならず、情意レベルで理学療法学科の学生にとって大きな意味を持っており、継続的なバイオメカニクス領域における学習の動機づけとなっている。実際、本学では種々の理学療法学関連の研究が紹介されているにも関わらず、卒業論文のテーマにバイオメカニクスを選ぶか、あるいは実験の中に何らかのバイオメカニクスの変数を利用した学生は36名中22名もあった。

理学療法学科における今後のバイオメカニクス教育の方向性

理学療法士学会では、先に述べた学問の性質からバイオメカニクスの変数を利用した発表が多くみられる。中には高等な力学を駆使した報告もある。この状況を教育に反映するためには、まずはバイオメカニクス教育を発展させていく必要があると考えられる。

しかし、リハビリテーションという多面的な学問では、背景の異なる幅広い学問の参加が必要で、必ずしもいわゆる“理系”的学生のみに門戸が開かれるべきではないと考える。従って、理学療法学科のバイオメカニクス教育は、文系の学生にも理解されるように計画されていくべきで、また興味があれば更なる学習の方向性を示すことが必要条件となる。

加えて基礎学習での教育の見直しも必要である。従来の物理学に代わってバイオメカニクスの教育を行うことで、専門学群でのバイオメカニクスの理解が高まると考えられ、今年3月に、アメリカの理学療法学科をもつ大学・大学院を幾つか訪問した。その中の一つ、ハートフォード大学では物理学の教授と理学療法学の教授が共通で、バイオメカニクスを取り入れた理学療法教育を行い成果を上げていた。高校で習った物理学は苦手でもバイオメカニクスを媒介とした物理学なら興味がもてる学生が多いと聞いた。

また、電子計算機もバイオメカニクス教育を充実させるために積極的に取り入れるべき方策であろう。最近の電子計算機の画像処理機能を利用すれば、概念的にわかりにくいものも視覚的に示すことができるようになってきている。これらの新しい教育資源の積極的活用もバイオメカニクス教育を発展させるための重要な要素になると考えられる。

おわりに

学校により若干のカリキュラムの違いはあるが、北里大学のカリキュラム例を例に挙げて基本的な運動学とバイオメカニクス教育の現状を紹介した。理学療法学科の教育では、運動学の中の特にバイオメカニクス教育は欠かせない要件であり、ますますの発展が期待される。おわりに、全ての理学療法学の履修者がバイオメカニクス研究の供給者とまではいかなくても、よい消費者となることが望まれる。

しかし、周辺の力学の発展はすさまじく、簡単になして理解されにくくなっている。理学療法学科のバイオメカニクス教育では、そのニーズを満たすため複雑な力学を理解されやすい形で供給していく必要があり、この分野でのバイオメカニクス研究者の一層の援助が必要である。

参考文献
1) 中村隆一、斎藤宏：基礎運動学第4版、ppl-15、医歯薬、東京、1994
2) 遠藤萬里：自然史とバイオメカニクス、バイオメカニクス学会誌1：9-14、1977

大洲修一（おおぐち しゅういち）
1993年米国ジョージア州立大学理学療法学専攻修士課程終了（理学修士）、北里大学医学部医学薬学療法学専攻講師、東京都老人総合研究所客員研究員、日本理学療法学士、日本リハビリテーション医学会、日本体力医学会会員、現在、身体障害の評価・疫学・予防に関する研究を行っている。