運動計測 一義足の歩行運動機能の計測一

森本正治

1. はじめに

運動計測の範囲は力計測と座標計測に大別され、スポーツ、バイオメカニクス、リハビリテーション工学等での使用目的により種々のリソースがあり、求められる精度やデータ量が異なる。本稿では、著者が取り組んできた義足の歩行運動の計測を中心に、その概要を紹介する。

義足の開発研究において、従来、その成果を下肢切断者の日常活動を反映した幅広い環境で計測できるシステムがなく、しかも、開発成果を個々の障害者に応用する場合に、最適に処置されているかどうかを客観的に評価する手法が確立されていなかった。人間の歩行運動を計測・評価するために従来用いられてきた床反力計と遠隔座標計測装置は、特に環境を整えた実験室に設置されており、どこへも持ち運んで簡単に計測ができるというものはなかった。義足歩行だけでなく健常者の歩行や麻痺者の歩行回復過程の計測評価にも使用できるが、汎用性が高い反面として制限が多く、連続数歩の平坦路歩行の計測に限定されていた。日常生活動作を反映した段階や坂道を含む幅広い環境で、被験者の運動を妨げることなく長期間の連続した歩行運動をリアルタイムで計測できる専用の計測評価システムが、信頼性の高い評価を行うためが必要であった。このような問題を解決するために、義足にしか使えないが、他の手法に比べて格段に優れた手法であるバイオニクル・スタディ計測手法に基づいた計測システムを開発してきた。

2. 義足歩行運動機能の計測・評価システム

筆者らは、複数の小型・軽量の体積計測系センサからの信号を携帯型コンピュータに取り込む義足機能計測・評価システム（バイオニクル・スタディ計測システム）を開発してきた。これは、測定対象が下肢切断者に限定されるが、従来の床反力計と遠隔座標計測装置から構成される片がかりで複雑な步行分析装置をいくらべて、力とモーメントを推定する義足維手部の近傍にセンサを設置できるという利点を持ち、計測精度も著しく高く、義足のバイロット（下肢や大腿のバイロット構造）に6分力を計測し、フレキシブル関節角度計と高耐久性足底スイッチを組み合わせ、移動可能な計測システムである。健常側の力学変動も必要な場合は、靴底に取り付ける薄型の3分力計を用いることで対応でき、ソケット内力の計測が可能な場合に小型3分力計を用意している。データ収録部には携帯型マイコンを用い、データを取り込みながらリアルタイム処理して、必要な情報をモニタ上で繰り返しと、グラフィック画面上にフィードバック表示すること等を容易に行える。

2.1 義足に取り込む6分力計（バイオニクルロードセル）

直交3軸方向の力3成分とモーメント3成分を計測する6分力計は、物体に作用する外力（合力と合モーメント）と作用位置を正確に計測するために必要である。義足各部に作用する力とモーメントを推定するためには、義足のバイロット内に組み込む小形・軽量で使いやすい6分力計が必要であり、研究室レベルで歪ゲージ方式の種々の構造のものが試作されてきたが、最近では国内の計測器メーカーの力計、機構の義肢メーカーが製品化されている。

6分力計本体の可動性の構造は、円筒型、同軸リング型、平行平板型などがある。円筒型は構造が簡単で重量も200g以下であるが、圧縮力の出力に対し曲げモーメントの干渉作用を受け易く、大きさを90mm以下にすることが困難であった。圧縮力の検出方式を工夫して、約40mmの高さで干渉を受け難い構造のものが製作できるようになった。同軸リング型は構造が複雑であるが高さを20mmまで短縮化できる。

2.2 義ソケット内力測定用の小型3分力計

従来、義ソケット内の3分力（圧縮力と2方向の剪断力）はSanderら6とWilliams7によって計測されている。Williamsらの3分力計は、磁気抵抗素子を厚さ4.9mmの多層円板に組み込んだ構造であり、挿入ゴムシールの特性に影響される圧縮力のスリップが無視できない値を示し、圧縮力の非線形性も大きかった。一方、Sanderらの3分力計は極小片挿入部に貼付された小形圧力変換器で圧縮力を検出する構造であるが、圧縮力の検出に際して表面に作用する剪断力の影響を大きく受けとるという問題があった。これらの問題を解決するために、著者らは、ケース外観面に作用する力（圧縮力と剪断力）を弹性体の剪断変形として検出する方式の3分力計を開発した。剪断4mmのクラウン部の片側の各対面に剪断力を直接計測できるようナブルゲージを貼り付けた構造で、直線性に優れ低干渉である。

2.3 靴底に取り付ける3分力計

従来は薄型の感圧センサ（感圧導電性ゴムや、感圧インク、圧電型プラスマック等）を靴底に貼り付けて圧縮力の計測検出する方法が試作されてきたが、3分力（圧縮1分力、水平2分力）を計測する薄型・軽量な実用に耐えるセンサはなかった。ところが、最近は剪断力を直接検出する焦電型プラスマックを用いたもの等、実用可能性の高いセンサが研究室レベルではあるが開発されてつつある。
2.4 フレキシブル関節角度計

人体の義足の関節角度を、動きをほとんど妨げることなく長年にわたって日常生活動作中に衣服を着用したまま測定できる、運動計測の幅広い分野で利用できる。このために、センサー本体を薄く小型化されていて人体の動きを伴う関節の動きや筋収縮に伴う皮膚表面の変形を吸収できるような柔軟で性質を持ち、取付けに時間を要すアーム作業の不要なことが必要条件である。従来は回転型ポテンショメータに関節の平行移動を吸収する伸縮アーム、平面平行リンク機構、三次元平行リンク機構など組み込んだ電気関節角度計が用いられたが、側方への突出が大きく小型化には限界があった。

そこで著者らは、関節角度の変化を一箇所に設けた角度センサで集中的に計測するのではなく、関節計測の微小変更を直列に連結して全体として両関節取付部のなす角度を計測するフレキシブル関節角度計を開発した。関節部に貼られた弾性膜が関節の動きについて受ける変形を、小さな面に貼りつけた導電性コンデンサーの電気抵抗変化としてプリング回路を用いて検出するもので、弾性膜と導電性コンデンサーの組み合わせにより、シリンコンゴム担当電気ゴム、あるいは金属フィルムフィラメントと筋層型大高ゲージ（ワイヤー型ゲージ線）線が用いられる。導電性ゴムの伸縮量と電気抵抗値の関係は歪ゲージに比べて非線型性が大きく、母材ゴムの特性に起因する非直線性の電気抵抗特性があるものの、プリング回路を用いて歪曲変形に対する引張りと圧縮側の電気抵抗値の差をとれば、これらの影響が互いに相殺されて、ヒステリシスが殆ど無く直線性に優れた特性が得られる。

歪ゲージ方式は1軸型に限れば製作が容易で扱いの影響を受け難く高精度で得やすいという特徴である。一方、導電性ゴム方式は多軸型角度計のうえに簡単で、2軸型では2mm角断面の形状形状まで製作した経験があり、手指等の小関節部の運動計測にも使える。また、180度を超える大きな曲げに対しては破損することなく、柔らかいために手の関節角度計測にも使用できる。

2.5 感圧導電布を用いた薄型・高耐久性足底スイッチ

靴の中敷または底に取付けて、歩行中と床接触と離反する状況を検出するために用いる足底スイッチは、従来、金属薄板の変形状態下で感圧インテリジェントな導電性ゴムなど、電気抵抗変化を利用したものが用いられてきた。しかし、その底面は寿命が短く、試験期間の標識計測中に使用に限定されていた。足底の変形に柔軟に対応できる極薄で高い耐久性を持つ足底スイッチが必要であり、著者は感圧導電布を用いることで解決した。

感圧導電布（ニッケルメッシュを施した導電織維を混合した糸を用いた織物）は、面に垂直方向の圧縮力が加えられることによって厚さ方向の電気抵抗値が絶縁状態から導通状態へ急激に変化し、スイッチ材料としては十分に使用可能なためである。構造は、感圧導電布の側面をSUJ 交織布（織物にナイロン織維、横にステンレス織維を用いた交織布で、横に方向のみ導電性を示す）で挟み込んで周辺を熱融着フィルムで固定しており、柔軟性に富み重量1.4gで、構造上も超薄型化設計が可能である。SUJ 交織布をそのまま引き出し線に用いることにより、従来のセンサに稀に見られた断線などの事故がなくなり耐久性が大幅に改善された。

3. おわりに

目的を義足機能の計測・評価に絞り、長時間無拘束に近い状態で被験者の運動を計測するための義足型センサと携帯型マイクロコンピュータから構成されるシステムの現状と、これを義足膝関節機能計測と評価に活用する例について紹介した。センサそのものは微小加工技術の導入により軽量化、小型化、高精度化、省電力化を進め、また、データ収録処理部も専用化してコンパクト化・省電力化をはかり、日常生活の動きを継続し期間である1週間の関節計測を実現できるようにしていきたいと考えている。

参考文献
1) 森本 他：移動式義足歩行機能計測システム、バイオメカニズム 8, 東京大学出版会, 251-263 (1986)
2) 牧川 他：携帯型歩行分析装置の開発と各種歩行における足底圧分布の測定、医用電子と生体工学，24, 169-174 (1986)
5) 草木貴己：義足実験荷重計測用6軸力センサの開発、第2回リポットセンサシンポジウム予稿集、65-68 (1990)
8) 森本 他：義肢ソケット内力測定用小型3分力計の試作、第20回バイオメカニズム学術講演会予稿集、750-752 (1999)
12) 森本 他：導電性ゴムを用いたフレキシブル関節角度計、医用電子と生体工学、24, 183-187 (1986)
13) 森本 他：歪角度を用いたフレキシブル関節角度計、医用電子と生体工学、26, 152-157 (1988)
14) 森本 他：導電性ゴム方式2軸フレキシブル関節角度計の開発、バイオメカニズム 12, 東京大学出版会, 223-230 (1994)
15) 森本 他：感圧導電布を用いた超薄型・高耐久性足底センサの開発と歩行分析への応用, 医用電子と生体工学, 第27巻特別号, 467 (1989)