要旨

人の前腕の振戦加速度データに対する AR (autoregressive) モデルの適用が、パーキンソン病と類縁疾患との鑑別診断に有効であるかどうかを検討した。AR モデルの次数、赤池によって、FPE (final prediction error) を最小にする 7 に設定した。対象とした被験者は、パーキンソン病患者 18 名、本態性振戦患者 20 名、およびコントロールとして健全高齢者 13 名である。その結果、振戦疾患患者と健康高齢者の振戦については、実験上に存在する特性値の符号、及び前腕の振戦の基本共振周波数における周波数帯域幅に高度な有意差があり、パーキンソン病患者と本態性振戦患者の振戦については、前腕の振戦の基本共振周波数における周波数帯域幅の分散に有意差があったので報告する。

1. はじめに

病理的振戦を主症状を持つ疾患を振戦疾患とよぶが、本研究においては、振戦疾患の中で特にパーキンソン病と、その類縁疾患としての本態性振戦に注目する。

パーキンソン病は振戦、前頭、無動・無力、および姿勢・歩行障害を 4 大症状とし、単独もしくは複数の症状が 70% 以上の確率で現れる 1)。中でもパーキンソン病の振戦は、初発症状として 7 肢の患者に出現し、安静時に 4 ～ 6 Hz の周波数を有するとされ 2)、診断上からも重要な症状とされる。

本態性振戦は、振戦のみが単独の症状として続く疾患である。

発症後の初期の数時間内は、ある特定の姿勢を維持するときにのみ振戦が出現する 3)。

パーキンソン病に対しては L-dopa などの有効な治療薬が存在することから 4)、早期の治療によって症状の進行を遅らせることが可能である 5)。しかし、パーキンソン病は進行性であるため、早期の診断が難しい、見逃されがちであり、症状が似ている本態性振戦などの他の病気と誤診されることもある。

このような背景のもとで、著者らはパーキンソン病と本態性振戦をはじめとする類縁疾患との早期の鑑別を目的として、振戦の定量的計測および解析を行ってきた 5)～8)。研究の目的は、神経内科医の臨床診断に基づく患者の鑑別が正しいと、可能なる限りそれに近い鑑別が可能な振戦のパラメータを探すことである。

これまでに振戦の計測システムを構築し、振戦の周波数（主要振戦周波数）を、主として FFT (fast Fourier transform) 法を用いて求め、パーキンソン病と類縁疾患との分類の指標とし、さらに、振戦のパワースペクトルに複数のピークが現れるような場合には主要振戦周波数のみでは振戦の特徴を十分に抽出することができないことから、振戦のより全体的な特徴をとらえるために、5 次の AR (autoregressive) モデル (AR(5)) の適用を試みた 9)。その結果、1 番目の予測係数は、主要振戦周波数と同様に、パーキンソン病患者群と本態性振戦患者群とを区別する情報を加速データから集約するパラメータではないかと考えられ、7 番目の予測係数は、パーキンソン病や本態性振戦にみられる病理的振戦と、健常者にみられる生理的振戦とを区別する情報を集約するパラメータではないかと考えられた。

しかしながら、本態性振戦の主要振戦周波数は加齢とともに減少することから 7)、この結果、とりわけ 1 番目の予測係数に関する結果は、患者を年齢による層に分けることによってよ

これらの要旨は解釈し、早期の鑑別支援のためのよりよい分類の指標を得ることを目的に、AR モデルの特性方程式の特性根の幾何学的配置を調べた。対象とした被験者は、パーキンソン病患者 18 名、本態性振戦患者 20 名、およびコントロールとして健常高齢者 13 名の合計 51 名である。その結果、振戦疾患患者と健常高齢者の振戦については、実験上に存在する特性根の符号、
および利き腕の振戦の基本共振周波数に対する周波数帯域幅に
高度な有意差があり、パーキンソン病患者と本態性振戦患者の
振戦については、利き腕の振戦の基本共振周波数に対する周波
数帯域幅の分散に有意差があったので報告する。

2. 被験者

被験者のデータを表1に示す。パーキンソン病の患者18名、
パーキンソン病と同様に高齢者に多く発症する病気である本態
性振戦の患者20名、およびコントロールとして健常高齢者13
名、合計51名を被験者とした。パーキンソン病、本態性振戦
の患者は長岡医院の患者であり、健常高齢者はケアハウス西
長岡への入院患者である。各群において、年齢に統計的な有意
差はなかった。男女比については、本態性振戦患者群の男性が
大半を占めるが、残りの二群では各自1名を除き、他はすべて
女性であった。

表1 被験者の概要

<table>
<thead>
<tr>
<th>Subjects (Male/Female)</th>
<th>Age<75</th>
<th>Age>75</th>
<th>Total</th>
<th>Age (Mean±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkinson's Disease</td>
<td>6(0/6)</td>
<td>12(1/11)</td>
<td>18(1/17)</td>
<td>74.5±6.7</td>
</tr>
<tr>
<td>Essential Tremor</td>
<td>13(11/2)</td>
<td>7(4/3)</td>
<td>20(15/5)</td>
<td>72.9±8.3</td>
</tr>
<tr>
<td>Control</td>
<td>6(1/5)</td>
<td>7(0/7)</td>
<td>13(1/12)</td>
<td>76.5±7.3</td>
</tr>
</tbody>
</table>

まず、パーキンソン病患者の状態を述べる。振戦歴が1年未満の
患者数は8名、2年未満は3名、3年未満は2名、4年未満
は1名、5年未満は2名、10年超は2名である。L-dopa 製
剤（ドパルゴ・マネシット）の投与を受けていない患者の数
は、振戦歴が1年未満の8名の患者の内7名である。その
7名の内、2名はドパゴン補充剤（パーソナル）の投与を
受けている。Hoehn&Yahr の重症度分類のStage IVの患者数は、
振戦歴が1年未満、2年未満、4年未満、10年超の患者に各1
名あり、残りの5名の患者はすべてStage IIIの患者である。
また18名全員に筋間隔、無動・無活動の症状があり、振戦歴が10年超の患者
1名を除いて17名にはオーバー現象がない。

次に、本態性振戦の患者の状態を述べる。振戦歴が1年未満の
患者数は2名、2年未満は1名、3年未満は1名、4年未満
は2名、5年未満は1名、6年未満は2名、7年未満は1名、9
年未満は2名、10年未満は3名、10年超が3名である。振
戦歴が1年未満の患者2名、1名はドパゴン補充剤（パーソ
ナル）の投与を受けている。また、振戦歴が3年未満の
患者1名と、5年未満の患者2名の中1名は、抗コリン薬（バ－
キニン）の投与を受けている。

最後に、健常高齢者の状態を述べる。本論文でいう健常高齢
者とは、病理的振戦がないという診断を受けていない人であること
である。彼らは加齢に伴う他のさまざまな疾病をもつ、薬物を全
く服用していない健常高齢者は1名のみであり、残り12名の
健常高齢者はさまざまな薬（便秘薬や胃薬、コレステロール低下
剤、血圧低下剤等）の内いくつかを服用している。

3. 計測システム

図1に、本研究で用いた計測システムの概要を示す。被験者
は椅子に座り、2台のテーブルにつつけ、前腕を約45度に保つ。
加速度計（NEC 三栄 9G320S）は、両手を指基部にマジックテープで
1台ずつ装置される。加速度信号はチャージャンプ
（NEC 三栄 8G3202）によって増幅され、
デジタルオシロスコープ（NEC 三栄 Omnische RT3104）に記録
される。デジタルオシロスコープのサンプリング周期は△
t=20ms であり、一回につきおよそ40秒間の計測を行い、両手
から各々2048 側の加速度データを得た。

4. 解析方法

（1）片腕当たりサンプリング周期△t=20ms, 測定時間約
40s, 個数2048 側の加速度データを、被験者の左右の前腕に対して
得る。

（2）1つの加速度データを約55間隔、N=256 側のデータに8
分割する。

（3）付録1に述べた方法で、AR モデルの次数p=7 として、総
形子測度数 a_m=1,2,3,⋯，p を得る(10,11)。

（4）特性方程式、式(A.5)の7つの複素根を、Muller 法を用い
て求める(12)。また、上で3群の共役複素根の実数部 a_c と虚
数部 b_c から、

\[f_c(z) = \frac{1}{2\pi} \tan^{-1} \left(\frac{a_c}{b_c} \right) / \Delta t \]

（1）

として振戦周波数を求め、また、絶対値が最大の共役複素根
が得られる基本共振周波数に対しては、

\[\Delta B = \left(\frac{1}{2\pi} \ln(b_c^2 + a_c^2) / \Delta t \right) \]

（2）

NII-Electronic Library Service
として、帯域幅 \(\Delta f \) を求める[1]。
(5)から(4)までの計算を、1人の被検者の左右前腕のそれぞれ8分割された加速度データに対して、計16回行う。
(6)合計31名の被検者に対して、(1)から(5)の計算を行う。

5. 結果
5.1 データの概要
本研究ではARモデルの次数 \(p \)を、特に断らない限り \(p=7 \)に選んでいる[1](付録1を参照)。
図2に、加速度計から得られたサンプリング周期 \(\Delta t=20\text{ms} \)

![Fig. 2 Accelerograms of physiological tremors observed in healthy old people and pathological tremors observed in patients with Parkinson’s disease and essential tremor disease.](image)

の、健常高齢者(Control), パーキンソン病患者(Parkinson’s disease), 本態性振戦患者(Essential tremor 1, 2)の生理的振戦の加速度データの一例を示す。図3(a)には、図2に示した振戦加速度の \(N=256 \)個のデータから、ウィンドウを用いないFFT法で求めたパワースペクトルと、7次のARモデルを用いたA.4で求めたパワースペクトルの例を示す。「Control」では、5.08Hz(基本周波数)に急なピークが、11.8Hz(第2高調波), 19.3Hz(第3高調波)に緩いピークが見られる。「Parkinson’s disease」では、2.84Hz(基本周波数)に急なピークが、6.66Hz(第2高調波), 17.5Hz(第3高調波)に緩いピークが見られる。「Essential tremor 1」では、4.45Hz(基本周波数)に急なピークが、8.85Hz(第2高調波), 16.1Hz(第3高調波)に緩いピークが見られる。「Essential tremor 2」は前症例と異なり、8.05Hz(第2高調波)に急なピークが、3.59Hz(基本周波数), 16.5Hz(第3高調波)に緩いピークが見られる。図2の「Essential tremor 2」の内、偶数調波を含む周期信号に特有な非対称な波形を見ることができる。

(a) 高速フーリエ変換(FFT)法と7次自己回帰モデル(AR(7))によるパワースペクトル
(b) Power spectra calculated using a 7th-order autoregressive model (AR(7)) and fast Fourier transform (FFT) method.

![Fig. 3 Power spectra and roots of characteristic equations of tremor acceleration shown in Fig. 2.](image)

図3(b)には、図3(a)を播くときに用いた7次のARモデルの特性方程式(A.5)の、7個の特性根を \(z \)平面でプロットした図を示す。ARモデルが安定であることから、特性根はすべて単位円内に存在する[15, 16]。1「Control」, 「Parkinson’s disease」, 「Essential tremor I」においては基本周波数に対応する
根が単位円に最も近いのに対して、「Essential tremor 2」においては第2高調波に対する根が単位円に最も近いこと、（2）「Control」の実線の符号が正であること、（3）「Control」、「Parkinson's disease」、「Essential tremor 1」の基本周波数に対応する根のうち単位円から最も遠い根は「Control」の根であることに注目していただきたい。

式(A.5)の7つの複素根の絶対値の内で、その値が最大になり単位円に最も近くなる複数根は、通常は基本共共振周波数を与える複数根である。ところが、図3に示した「Essential tremor 2」のように、本態性振戦の被験者の内5名においては、基本共共振周波数の2倍すなわち第2高調波の共共振周波数を与える複数根の絶対値が、片腕(2人)の8区間のすべて、若しくは両腕(3人)の8区間のすべてで最大になった。5名の内1名は発病後4年未満、1名は発病後6年未満、3名は発病後10年以上(実際、3名共に発病後15年)を経た患者であった。本研究で測定したデータの範囲では、この分布パターンを示す患者は100%本態性振戦であるということができる。このため早期鑑別支援のためのよりよい分類の指標を得るという本研究の目的からは、この特異な分布パターンはよりよい分類の指標の候補である。しかし、このような根の特性を示す被験者の数が5名と少なく、これ以上の考察ができなかったため、5、3、5、4節の分析からは除外した。

5.2 振戦加速度のパワーセットについて

本研究では、振戦加速度のパワーセットそのものを、鑑別支援のための分類の指標の対象としては取り上げなかった。その理由は2章でも述べたように、パーキンソン病患者18名の内13名がL-dopa製剤をはじめとする薬物療法を受けていたためである。振戦のパワーセットは、このような薬物療法によって、一般に大きく減少する。

この節では、このパワーセットに関する興味ある事実のみを述べる。

パーキンソン病患者、本態性振戦患者、健常高齢者の非利き腕と対側の腕の非利き腕の振戦の加速度のパワーセットを図4に示す。これは8分割された各々の区間のデータから求めた値を、平均値した値である。健常者においては非利き腕の振戦のパワーセットが大きいのに対して、パーキンソン病、本態性振戦の患者においては非利き腕の振戦のパワーセットの方が大きい。なお、利き腕と非利き腕のパワーセットの間の相関係数は、パーキンソン病患者では-0.01、本態性振戦患者では0.12、健常高齢者では0.23であった。

健常高齢者における生理的振戦では、利き腕のパワーセットが大きければ非利き腕のパワーセットも大きいと言えるのに対して、パーキンソン病患者や本態性振戦患者における病理的振戦では、利き腕と非利き腕のパワーセットは独立したものであると言える。

次に、振戦加速度を7次ARモデルで同定したときの、同様にして求めた上述のパワーセットに対する残差のパワーセット(線形予測誤差)の比を図5に示す。生理的振戦に対して、病理的振戦の方が小さい、ARモデルへの適合性がよい。これは病理的振戦が生理的振戦に対して、より規則的であることを示している。なお、利き腕のパワーセットに対する残差のパワーセットの比と非利き腕のそれとの間の相関係数は、パーキンソン病患者では0.32、本態性振戦患者では0.83、健常高齢者では0.51であった。本態性振戦患者における振戦では、利き腕のARモデルへの適合性がよければ、非利き腕のARモデルへの適合性もよいと言える。

5.3 実験上に存在する特性のパワーセットについて

健常高齢者の前腕の生理的振戦には、図3 (b) に示すような正の実験上の根が安定的に存在した。一方、振戦疾患患者の各前腕の振戦の多くには、分割された8区間のすべて、若しくは一部の区間に正の実験上の根が存在せず、代わりに負の実験上の根が存在した。

そこで便宜上Xという変数を導入し、

\[X = 1 \text{ (左右前腕のいずれか一方の } 8 \text{ 区間中) } \]

以上で実験上の根が存在しない場合

\[X = 0 \text{ (その他の場合) } \]

という値を与えた。

このXを1元配置の分散分析した結果、健常高齢者とパーキンソン病患者、健常高齢者と本態性振戦病患者、健常高齢者と橈症疾患患者（パーキンソン病患者と本態性振戦病患者の和）のどの組合せに対しても、有意差(p<0.01)が存在した。
5.4 利き腕の振戦の基本共振周波数における周波帯域幅とその分散について

得られたデータ全般を観察して、式(2)で求めた利き腕の前腕の振戦の基本共振周波数に対する帯域幅△Bが生理的振戦には比較的大きく、病理的振戦では比較的小さい傾向がみられた（△Bが小さくなることとき、図3(a)において基本周波数に対応するピークが失われ、図3(b)において基本周波数に対する根が単位円に近づくこととは同じ意味である。）。図3に示した「Control」の例では△B=3.70Hzであるが、「Parkinson's disease」の例では△B=1.22Hz、「Essential tremor」の例では△B=0.304Hzであり、その差は図に明らかである。

次に、図6に示すように、この周波帯域幅△Bの8区間での値の分散がパーキンソン病患者、本態性振戦者、非利き腕の3群に、標準偏差(SD: standard deviation)が0.513Hzに対して、パーキンソン病患者の帯域幅△B=1.61Hz、標準偏差0.241Hzである。

なお、非利き腕の振戦については、このような差を出することはない。
とができなかった。生理的振戦においては帯域幅△Bに左右差がなく、大部分の被験者の帯域幅△Bは手を前後に2Hz付近に集中したが、非利き腕の場合にはかなり広い1〜4Hz程の範囲に分布した。一方で、振戦疾患者の場合には、利手腕の帯域幅△Bは2Hz付近の値よりも小さい。しかし、かなり広い範囲に分布し、それと同時に、その帯域の左右差は減少した。このことが、非利き腕の振戦において、帯域幅△Bに差を見出すことができなかった主要な理由である。

振戦疾患者では、帯域幅△Bの値の左右差が減少したことから、本研究では、片方の腕に強いリパの振戦が起こるがパーキンソン病患者においても症状出現の左右差を考慮していないが、そのため以下の研究を行った。

パーキンソン病患者において、片方の振戦加速度のパワースペクトルの帯域幅に対する比が2倍以上である振戦を強いと判定する場合、本研究の被験者18名においては、利手腕が強かったが名、非利き腕が強いが名、どちらか強いともいえないが残りの9名という内訳であった。また、単にパワースペクトルが大きい片方の腕の振戦を強しと判定すると、利手腕が9名、非利手腕が7名が9名であった。しかし、これを利手腕の基本共振周波数におけるパワースペクトル帯域幅△Bの値を使って、利手腕5名、非利手腕4名、その他9名を図子として、また(利手腕9名、非利手腕7名)を図子としての一元配置の分散分析を行った結果、共に有意差を示すことはできなかった。非利手腕のパワースペクトル帯域幅△Bの値を使った場合も同じ結果であった。一方で、利手腕と非利手腕のパワースペクトル帯域幅△Bの値を回帰分析すると正の傾きを持つ有意な回帰式を得ることができた。すなわち、帯域幅△Bの観点からはどちらの腕の振戦のパワースペクトルが大きいかはあまり問題ではなく、片方の腕の帯域幅△Bが小さい場合は、他方の腕の帯域幅△Bも小さい傾向である。周波数帯域幅△Bの分散についても、同様な関係が存在した。

（1）健常高齢者とパーキンソン病患者

8区間で評価した健常高齢者とパーキンソン病患者の利手腕の帯域幅△Bを、1元配置の分散分析した結果を図7(a)に示す。両者には有意差(p<0.05)がある。また、ROC曲線(receiver operating characteristic curve)とカットオフポイントを図7(b)に示す。

（例題）ROC曲線の利用の例

周波数帯域幅△Bのカットオフポイント（Cut-off point）を1.3Hzに選ぶと、図7(b)から、敏感度（Sensitivity）は0.582、偽陽性率（False positive fraction）は0.2と読みとることができる。このとき、パーキンソン病である事後確率がp(prior)である患者の検査結果が△B<1.3（陽性）であったとすると、パーキンソン病である事後確率は、0.582+p(prior)=[0.582+p(prior)]/0.582+p(prior)+0.2 [1-p(prior)]になる。逆に、検査結果が△B>1.3（陰性）であったとすると、パーキンソン病である事後確率は、1-0.582+p(prior)=[1-0.582+p(prior)]/1-0.582+[1+p(prior)]になる。

P(prior)=0.5であったとすれば、パーキンソン病である事後確率は、陽性のときは0.744になり、陰性のときは0.343になる。

（2）健常高齢者と本態性振戦者

8区間で評価した健常高齢者と本態性振戦者の利手腕の帯域幅△Bを、1元配置の分散分析した結果を図7(a)に示す。両者には有意差(p<0.05)がある。また、ROC曲線とカットオフポイントを図7(c)に示す。

（3）健常高齢者と振戦疾患者

8区間で評価した健常高齢者と振戦疾患者（パーキンソン病患者と本態性振戦者）の利手腕の帯域幅△Bを、1元配置の分散分析した結果を図7(a)に示す。両者には有意な差(p<0.01)がある。また、ROC曲線とカットオフポイントを図7(d)に示す。

（4）パーキンソン病患者と本態性振戦者

パーキンソン病患者と本態性振戦者の利手腕の帯域幅△Bの8区間で評価した。
6. 考察
6.1 実験上に存在する特性根の符号について
5.3節で述べたように、健常高齢者の前腕の生理的振戦のARモデルの特性方程式は、正の実根が安定的に存在し、振戦疾患患者の振戦の多くには、分割された8区間のすべて、若しくは一部の区間に正の実根が存在せず、代わりに負の実根が存在した。

これは、文献8の「7番目の予測係数は、病的振戦と生理的振戦とを区別する情報を集約するパラメータであると考えられ、正で値が大きいほど病的振戦である可能性が高い」ことにより、ほぼ対応する。

これは、特性方程式(5)を,

\[z'(1 + \sum_{m=1}^{7} a_m z^{-m}) = \prod_{n=1}^{7} (z - \beta_n) = 0 \]

と因数分解したときに、典型的な場合として \(\beta_m, m=1,2,\ldots,7 \)が3組の共役複素根 \((B_1, B_2, B_3, B_4, B_5)\)と1個の実根 \(\beta_7 \)からなる場合を考えると,

\[a_i = \prod_{m=1}^{7} \beta_m - \beta_7 \prod_{m=1}^{3} |\beta_m|^2 \]

と表されることから、\(a_i \)の符号は1個の実根 \(\beta_7 \)の符号と逆の符号になるからである。

従って、本研究の結果の一つである「病的振戦のARモデルの特性方程式は、負の実根を因子として持つことが多い」は、「病的振戦の7番目の予測係数は、正で値が大きいことが多い」の別の表現であるとも言える。

なぜ、このような結果になるのかについて、現在のところ明確な説明は困難である。しかし、著者たちは一定、次のような解釈ができるのではないかと考えている。

前腕の筋肉の回りの等価的な慣性モーメントを \(I \) kgm²、筋の筋肉の等価的な摩擦係数を \(\mu_0 \) Nms、等価的なストレスポットを \(D_0 \)Nm、\(f(\phi, \dot{\phi}) \)を \(\phi, \dot{\phi} \)の3次式、\(Noise \)を雑音とすると、前腕の平衡位置からの偏差 \(\phi \)は、次式で与えられる非線形な2階微分方程式で記述できると考えられる。

\[\dot{x} \ddot{x} + \mu_0 + f(\phi, \dot{\phi}) + Noise \]

ここで \(x=d\dot{x}/dt \)である。

\(f(\phi, \dot{\phi}) \)の総対値が小さいとき、すなわち、非線形性が弱いときに、\(Noise \)としてインパルスが入力されたときの \(\phi \)の応答を繰り返し法で求めると、その第2近似は、\(x(2\zeta \omega_n), x(\sqrt{3\omega_n}\cos(\omega_n t)), x(\sqrt{3\omega_n}\sin(\omega_n t)), x(2\zeta\omega_n\cos(2\omega_n t)), x(2\zeta\omega_n\sin(2\omega_n t)), x(3\zeta\omega_n\cos(3\omega_n t)), x(3\zeta\omega_n\sin(3\omega_n t)) \)に異なる定数を乗じたものと考えることができる。ここで、

\[q_n = -\mu_0(2\lambda_0) \]

\[\omega_n = \sqrt{4\zeta^2 + 4\zeta\lambda_0}/(2\lambda_0) \]

であり、

このことから、第二近似の \(\phi \)の変換は、分子をNumerator(\(z \))として次式のような形になる。

\[Numerator(z) \]

\[\frac{1}{1 - \exp(2\zeta\omega_n)z^{-1} + \exp(2\zeta\omega_n)} \]

\[\frac{1}{(1 - \exp(2\zeta\omega_n)z^{-1} + \exp(2\zeta\omega_n))} \]

(7)

6.2 利き腕の振戦の基本共役周波数帯域幅とその分布について
5.4節で述べたように、式(2)で求めた利き腕の前腕の振戦の基本共役周波数帯域幅 \(\Delta B \)が生理的振戦では比較的大きく、病的振戦では比較的小さい傾向がみられた。

著者らは、式(7)に示した量を用いると、式(2)が次のように表されることを示すことができる。

\[\Delta B_\phi = \frac{1}{2\pi n_c} (n_c + 2z) / (\lambda_1 z^2) \]

\[\Delta B_\phi = \frac{-\mu_0}{2\pi n_c} \cdot \frac{\mu_0}{2\pi n_0} \]

\[\Delta B_\phi = \frac{-\mu_0}{2\pi n_0} \]

(8)

\(\Delta B_\phi \)の値が小さくなるということは、\(\zeta \phi \)の値が小さくなるということに等しい。式(6)，式(7)から、\(\zeta \phi \)の値が小さくなると振戦は制御の小さなものになることから、この結果は物理的にも妥当なものであるといえる。しかし、どのようなメカニズムで \(\Delta B_\phi \)の値が変化するのかということについては、現段階で明らかにすることができない。

5.4節では更に、周波数帯域幅 \(\Delta B \)の8区間にでの値の分布がパーキンソン病患者では比較的大きく、本態性振戦患者では比較的小さいことを述べた。これはパーキンソン病患者の振戦が、本態性振戦の患者の振戦と比較して、より不安定であることを示している。なお、このことは図2の「Parkinson's disease」、「Essential tremor」の流からも見てとることができる。後に比べて、前者は特性的時間的な変動が大きい。

7. おわりに
振戦の加速度データに対するARモデルの適用が、パーキン
参考文献

1) 水野美邦, 水野貞子: パーキンソン病治療の新しいアプローチ, 日本ペーリンガーインゲルハイム株式会社 (1998)
2) 柳澤信夫: パーキンソン病と振戦, Pharma Medica, 14(8), 111-116 (1996)
3) 若山吉弘: パーキンソン病とその類縁疾患の臨床, 117-121, 永井書店 (1994)
5) 新藤邦元, 梶平幸代, 柳原将司, 松本義伸, 田村正人, 福本一朗: パーキンソン病の類縁疾患, 日本理学療法学会, 1996
6) 梶平幸代, 柳原将司, 新藤邦元, 松本義伸, 田村正人, 福本一朗: パーキンソン病の類縁疾患, 日本理学療法学会, 1996

ARモデルの次数をP決定する方法として, FPE (Final Prediction Error) を用いることがよく行われるが, 本稿ではARモデルの模型を用いてチロセラチンの増減を予測するため, 以下の方法を用いる。

$$x(s) = \sum_{m=1}^{P} \alpha_m x(s-m) + e(s)$$

(1) のようなモデルにおけるパラメータの推定は, 最小二乗法を用いることが一般的であるが, 本稿では, 以下の方法を用いる。

$$FPE(p) = \frac{N^2 + p^2}{N^2 - p^2} \frac{N}{N-p} \sum_{m=1}^{P} \left(x(s) - \sum_{m=1}^{P} \alpha_m x(s-m) \right)^2$$

(2) のようにして, ARモデルの次数を決定することができる。
スペクトルのピークがたかだか3つであることを考慮して決定された。
線形予測係数の計算法は、いくつか存在する。本研究では加速度データから、まず自己相関関数を。

\[
R(s) = \sum_{m=0}^{\infty} x(m)x(m+s)/N \quad (A.3)
\]
によって計算した。次に、Levinson-Durbin のアルゴリズムを用いて、Yule-Walker の方程式を解くことにより、線形予測係数 \(a_m \) をそろうと \(m=1, 2, \ldots, p \) を得た。
なお、加速度データのパワースペクトル \(S(f) \) を、この AR モデルのパラメータで表現すると,

\[
S(f) = \frac{\sigma^2 \Delta t}{1 + \sum_{m=1}^{p} a_m \exp(j2\pi fm\Delta t)}^2 \quad (A.4)
\]
になり、特性方程式は、次のようにになる。

\[
1 + \sum_{m=1}^{p} a_m z^{-m} = 0 \quad (A.5)
\]
A basic research of differential diagnostic system using AR model for pathological tremors.

Kiyoshi OKADA, Shima HANNO, Ichiro FUKUMOTO
*Department of Electronic Control Engineering,
Nagaoka National College of Technology
888 Nishikatakai, Nagaoka, 940-8532 JAPAN
**System Development Group, Medical System Division, Kissei Comtec
***Institute of Biomedical Engineering, Nagaoka University of Technology

Abstract:
The usefulness of analysis of acceleration data using an autoregressive (AR) model for differential diagnosis of Parkinson's disease and other diseases with tremors was investigated. The order of the AR model used in this study was 7, in accordance with Akaike's final prediction error criterion. The subjects were 18 patients with Parkinson's disease, 20 patients with essential tremor, and 13 healthy old people as a control group. The results of analysis showed that the sign of the characteristic root that exists on the real axis of a complex plane and the frequency band width at basic resonant frequency of the tremor in the dominant forearm are useful parameters for distinguishing pathological tremors from physiological tremors. The variance of the frequency band width was found to be a useful parameter for differentiating patients in the Parkinson's disease patient group and essential tremor patient group.

Keywords: autoregressive model, Parkinson's disease, essential tremor, pathological tremor