ランダム行列模型による有限密度QCD相構造

佐野崇*、藤井宏次†

概要

アノマリーによるU(1)対称性の破れの効果を取り込んだランダム行列模型に、クォークフレーバーごとに異なる化学ポテンシャルを導入し、アノマリー効果が相構造に果たす役割を調べた。アノマリー効果を取り込まない模型による先行研究では、2フレーバーの場合、u, dクォーク凝縮がそれぞれ独立に相転移することが指摘されていた。一方、アノマリー項は、2つの数寄変数を混合し、2回の相転移を1回にまとめる働きをもつ。さらに3フレーバーの場合には、3つのクォーク凝縮間だけではなく、クォーク凝縮とモノ凝縮の両者が混合される。このため、クォーク凝縮とモノ凝縮についての相転移にも、同時に起きる傾向がある。

1 導入

有限密度QCDの理論研究は、近年のRHIC, LHC, GSI-FAIRなどで実施・予定されている実験とも関連し、精力的に行われている [1]。有限密度QCDを考える場合、軽いクォークフレーバーに対して等しい化学ポテンシャルを仮定することが多い。しかし、実際の重イオン衝突実験では、u, dクォーク密度には有限の非対称性が存在し、さらにsクォーク密度はほぼゼロだと予想できる。また、ベータ平衡に達した中性子星内部でも、3種のクォークフレーバーの密度は異なっている。加えて、アイソコンド化学ポテンシャルのみが有限の場合、格子QCD計算が符号問題にとらわれずに可能であるという特徴がある。このように、クォークフレーバーごとの化学ポテンシャルを独立変数とした相図を考察することは興味深い。我々は、QCDの有効模型であるカイラルランダム行列 (ChRM) 模型を拡張し、U(1)アノマリーの効果を取り込んだ [2]。この模型の相構造は、有限密度の重イオン衝突実験に明らかにされている [3]。本研究は、この模型を、クォークフレーバーごとに異なる化学ポテンシャル空間へ拡張し、その相転移を調べることで、アノマリー効果の相図に果たす役割を明らかにすることを目指す [4]。

2 モノ凝縮相

QCDの分配関数は、Dirac演算子の行列式を、ゲージ作用による重みで平均したものである。

\[Z_{QCD} = \int \mathcal{D}A \prod_f \det(D(\mu_f) + m_f)e^{-\text{SYM}} \] (1)

ここで、\(D(\mu_f) = \gamma_0(\partial_x - igA_x + B_x\mu_f) \) は、フレーバー \(f \) に対するDirac演算子、\(m_f \) は質量、\(\mu_f \) は化学ポテンシャルである。また、\(B_x = (0,0,1) \) は定数ベクトルである。

3つのフレーバーに対する化学ポテンシャル \(\mu_u, \mu_d, \mu_s \) を、次のような線形結合で書きなおす。

\[\mu_q = \frac{1}{2}(\mu_u + \mu_d), \] (2)
\[\mu_I = \frac{1}{2}(\mu_u - \mu_d), \] (3)
\[\mu_Y = \frac{1}{2}(\mu_u + \mu_d - 2\mu_s). \] (4)

*東大理、e-mail address: tsano@nti.c.u-tokyo.ac.jp
†東大総文
アイソスピン化学ポテンシャル \(\mu_F \)，ハイパーキャーボン化学ポテンシャル \(\mu_Y \) の大きさが，3つのフレーバ間の化学ポテンシャルの非対称性を示す。\(\mu_L = \mu_Y = 0 \) のとき，すべてのフレーベで化学ポテンシャルは等しくクォーク化学ポテンシャル \(\mu_q \) になる。

一般に \(\mu_L \neq 0 \) または \(\mu_Y \neq 0 \) のとき，メソン凝縮が生じる可能性が指摘されている [5, 6]。このことは，直接的には次のように理解できる：例として，\(N_f = 2 \) の場合を考える。このとき，軽いNGポノンである3つのpionのうち，2つの有効pionは，±1のアイソスピン量子数（\(\gamma_3 \)の固有値）を持つ。\(\mu_L \) はアイソスピン数に共役化学ポテンシャルであるから，\(\mu_L \neq 0 \) では，2つのpionのうちの片方が励起しやすくなり，もう片方は励起しづらくなる。すなわち，片方は質量が下がり，もう片方は質量が増える。したがって，pion間の相互作用を無視できるならば，片方のpion質量がゼロになったとき，Bose-Einstein凝縮がおこる。これが（低密度での）pion凝縮である。また，この議論から，凝縮の起こる典型的な \(\mu_L \) が，pion質量 \(m_p \) で特徴づけられることが予想できる。

定量的な計算には，カイラルシング模型が用いられる。運動量を無視し，ポテンシャル部分を最小化するユーニタリ行列を見つけることで，基底状態は決定される。主な結果は次のようにまとめられる [詳細な結果は文献6の Fig. 1 を参照]。

- \(\mu_L \) が有限で \(\mu_Y \) が小さい場合，\(\mu_L < m_p \) では通常のカイラル対称性の破れた相が，\(\mu_L > m_p \) ではpion凝縮相が基底状態となる。
- \(\mu_Y \) が有限で \(\mu_L \) が小さい場合，\(\mu_Y < m_K \) では通常のカイラル対称性の破れた相が，\(\mu_Y > m_K \) ではkaon凝縮相が基底状態となる。
- \(\mu_L \) も \(\mu_Y \) も大きい場合，\(\mu_L - \mu_Y \) 平面上で，pion凝縮相とkaon凝縮相とは1次相転移線により隔てられる。

これらの結果は，化学ポテンシャルの小さな領域では，QCDに対する信頼できる予言である。一方で，化学ポテンシャルの大なる領域については，カイラル相転移を考慮する必要があるため，NJL模型 [8, 9] やChRM模型 [10, 11] などの，ダイナミカルなカイラル対称性的破れを扱った模型による考察が重要となる。

3 ランダム行列模型

ランダム行列模型 [12] は，カイラル対称性の自発的破れが，Dirac演算子のlow-lyingな固有モードによって支配されていることに基づいて構成される（Banks-Casher関係式）。Dirac演算子は，次のようにゼロモード空間にtruncateできると仮定される。

\[
D = \begin{pmatrix}
0 & iR + C \\
iR^T + C^T & 0
\end{pmatrix},
\]

ここで，ガンマ行列は \(\gamma_5 = \text{diag}(+1, -1) \) となるように選んだ。Dirac演算子のブロック構造は，\(\{ D, \gamma_5 \} = 0 \) を満たすように決められている。\(R \) は一般に長方形のランダム行列，\(C \) は非ランダムな対称効果を表す行列である。

\(R \) が長方形のとき，\(D \) は \(|\psi| \) 個の厳密なゼロ固有値を持つ。ただし，\(|\psi| \) は \(R \) の行と列の差である。これを，位相相関子と，Dirac演算子の厳密なゼロ固有値との間の指数定理を再現している。アノマリー効果を取り込むには，適切な非ゼロの位相相関子の効果を取り入れることが必要である。よって，一般に長方形のランダム行列を取り扱う必要がある。そのために，ゼロモードを，near-zeroモードと，位相的ゼロモードに分けて考えることにする [13, 2]。前者は，それぞれ \(N \) 個の左右モードであり，複雑なグルーホンダイナミクスを反映している。後者はインスタントンを起源とする，空間的局在化した，\(N_p, N_- \) 個の左右モードである。\(N_p, N_- \) はそれぞれ，背景ゲージ場の持つインスタントン，反インスタントンの個数と考えられる。このときランダム行列 \(R \)

\[1 \] 有限バリオン密度における \(p \)-wave pion凝縮も広く研究されている [7]。
は \((N + N_+) \times (N + N_-)\) 行列となり、対応する位相角は \(\nu = N_+ - N_-\) である。ゼロモード数 \(N, N_+, N_-\) は、それぞれ体積 \(V\) に比例する大きさの量である。
次に、相関効果行列 \(C\) の形を与える。フーリエ変換 \(f\) に対して、温度 \(T\) と化学ポテンシャル \(\mu_f\) に依存した \(C_f\) として、次のようなもっとも単純なものを探用する [14, 3]。

\[
C_f = \begin{pmatrix} \mu_f + iT & 0 & 0 \\ 0 & \mu_f - iT & 0 \\ 0 & 0 & 0 \end{pmatrix} \tag{6}
\]

相関効果は \(N \times N\) の near-zero モードセクタのにのみ持込まれている。こうすることで、位相感受率の非物理的抑制を避けることができる [15, 16]。物理的には、局在化した位相ゼロモードは、境界条件である相関効果の影響を受けにくいと解釈できる。\(\pm iT\) は、2 つあるフェルミオンの最低次の松原周波数を表している。両方の符号を取り込んだことで、電子共役変換 \(\mu_f \rightarrow -\mu_f\) に対する不変性を、分配関数は持つ。

\(N_+\) と \(N_-\) を固定した場合、以下のとおり定義された Dirac 演算子に対して、ChRM 模型の分配関数は次のように定義される。

\[
Z_{N_+, N_-} = \int dR e^{-N^2 \Tr R^2} \prod_{f=1}^{N_f} \det(D(\mu_f) + m_f) \tag{7}
\]

\(R\) の各要素に対して、独立したガウス分布を用いて平均操作を行っている。カイラル対称性の破れのスケールは、パラメータ \(\Sigma\) によって特微づけられる。全分配関数は、インスタントン数 \(N_+, N_-\) について和を取ることで定義される。

\[
Z_{RM} = \sum_{N_+, N_-} P(N_+) P(N_-) Z_{N_+, N_-} \tag{8}
\]

ここで、\(P(N)\) はインスタントン数分布関数である。インスタントン間に相互作用を考えないと、この関数としてはポアソン分布関数を取るのが自然である [17]。ところが、その場合、最終的に得られる有効ポテンシャルが下に有限でなくなり、安定な基底状態が存在しない [13]。そこで我々は、分配関数を次のような二項分布に変更した。

\[
P(N) = \begin{pmatrix} \gamma N \cr N_+ \cr N_- \end{pmatrix} p^{N_+} (1 - p)^{N-N}, \tag{9}
\]

この分布関数は、体積 \(V\) を、\(\gamma N\) 個の細胞に分割し、その内部にインスタントンが 1 つ存在する確率を \(p\) とおき、2 個以上存在する確率を無視することで得られる。すなわち、物理的には、インスタントン間に斥力的な相互作用を考えることになる。この変数が、安定な基底状態の存在する有効ポテンシャルを導く [2]。

ランダム行列を積分し、ポソノ化の手続きを行うことで、\(N_+\)、\(N_-\) の和は具体的に実行することができる。

\[
Z_{RM} (\mathcal{M}, \bar{\mu}) = \int dS e^{-2NH} \tag{10}
\]

ここで、有効ポテンシャル

\[
\Omega(S; \mathcal{M}, \bar{\mu}) = \frac{\Sigma^2}{2} \Tr S + \frac{1}{2} \log \det \begin{pmatrix} S + \mathcal{M} & \bar{\mu} \\ \bar{\mu} & S^+ + \mathcal{M} \end{pmatrix} - \frac{\gamma}{2} \log |\alpha \det(S + \mathcal{M}) + 1|^2 \tag{11}
\]

を定義した \((T = 0)\)。ポソノ場 \(S \in \mathbb{C}^{N_+ \times N_-}\) はオーマパラメータ行列であり、\(\Phi \sim \overline{\Phi} \sqrt{\gamma} \psi\) のようにフィルミオン 2 次形式と対応している。

\[
\mathcal{M} = \text{diag}(m_1, m_2, \ldots, m_{N_f}) \quad \text{と} \quad \bar{\mu} = \text{diag}(\mu_1, \mu_2, \ldots, \mu_{N_f})
\]

は、それぞれ質量、化学ポテンシャル行列である。\(\gamma\) と \(\alpha = \frac{\rho}{1 - \rho}\) を含んだ項が、アノマリーノの効果を表しており、\(\mathcal{M} = 0\) においても、U(1) 変換 \(S \rightarrow S e^{i\theta}\) に対する不変性を保つ [18, 17]。熱力学極限 \(N \rightarrow \infty\) では、基底状態は接点方
熱場の量子論とその応用

$$\frac{\partial S}{\partial S_{fg}}$$ の解として求めることができる。按点解 S を用いると、フレーバー f に対するカイラル締結は次のように計算できる。

$$\langle \psi_f \psi_f \rangle = \frac{\partial}{\partial m_f} \Omega(S; M, \mu) = -\Sigma^2 S_{ff}.$$ (12)

有限温度 T と、有限の (フレーバーに依存しない) 化学ポテンシャル μ に対する、この模型の振る舞いはすでに研究されている [2, 3]。$\mu = 0$ のとき、カイラル極限で、$N_f = 2$ のとき 2 次相転移が、$N_f = 3$ のとき 1 次相転移が見出される。この違いは、アノマリー効果である行列式相互作用項が、$N_f = 2, 3$ について、ポテンシャルに異った寄与をするために生じる。同様に、カイラル極限における $T - \mu$ 相図は、$N_f = 2$ では、低密度高温側に 2 次相転移線が、高密度低温側に 1 次相転移線が現れ、両者は三重臨界点でつながっている。一方、$N_f = 3$ では、1 次相転移線のみが存在する。有限の質量を導入すると、$N_f = 2$ の 2 次相転移線はクロスオーバーに変わり、三重臨界点の代わりに臨界点が現れる。$N_f = 3$ の場合、高温側の 1 次相転移が弱まってクロスオーバーになり、1 次相転移の端点に臨界点が現れる。すなわち、$N_f = 2, 3$ の相図は定性的に同様になる。

4 相構造

4.1 $N_f = 2$

ここでは、縮退した質量 $m_u = m_d = m$ を持つ u, d クォークの系に対し、一般に $\mu_u \neq \mu_d$ の場合を考える。オーダーパラメータ行列 S は、U(2) の生成子 λ_a ($a = 0, 1, 2, 3$) を用いて、一般に $S = \lambda_a(\phi_u + ip_{\phi}u)$ とパラメータライズできる。通常のカイラル締結は、$\phi_0 \neq 0$ で特徴づけられる。非ゼロの $\mu = (\mu_u - \mu_d)/2$ が存在するときは、$\rho_1, \rho_2 \neq 0$ で特徴づける pion 締結が存在する。そこで、以下では次のような Ansatz を用いる。

$$S = \left(\begin{array}{cc} \phi_u & i \rho_1 + \rho_2 \\ i \rho_1 - \rho_2 & \phi_d \end{array} \right)$$ (13)

$\phi_u, \phi_d, \rho_1, \rho_2$ は、実のオーダーパラメータである。$\mu \neq 0$ が SU(2) 対称性を明示的に破壊するため、一般に $\phi_u \neq \phi_d$ となっている。この Ansatz を有効ポテンシャルの式 (11) に代入すると、

$$\Omega = \frac{\Sigma^2}{2}(\phi_u^2 + \phi_d^2 + 2|\rho|^2) - \frac{1}{2} \log [(\sigma_u + \mu_u)(\sigma_d - \mu_d) + |\rho|^2] - \frac{1}{2} \log [(\sigma_u - \mu_u)(\sigma_d + \mu_d) + |\rho|^2]$$

$$- \frac{\gamma}{2} \log \left[\alpha(\sigma_u \sigma_d + |\rho|^2) + 1 \right]$$ (14)

を得る。ここで $\sigma_f = \phi_f + m_f$ である。$\gamma = 0$ なずなうアノマリー効果を無視したとき、この模型は、文献 [10] で研究されたものと一致する。ポテンシャルは、ρ_1, ρ_2 に対して、$|\rho|^2 = \rho_1^2 + \rho_2^2$ の形で依存する。これは、λ_3 によって生成される U(1) 対称性を反映している。以降では、任意に $\rho_1 = 0, \rho_2 = \rho$ とおくことにする。非ゼロの $\rho = ((\bar{\psi}_\gamma \gamma_d) - (\bar{\psi}_d \gamma_u))/2$ により、pion 締結による U(1) 対称性の自発的破れが明らかになる。

按点方程式は 3 つの連立方程式になる。

$$\frac{\partial \Omega}{\partial \phi_u} = \Sigma^2 \phi_u - \frac{1}{2} \left[\frac{\sigma_u - \mu_d}{(\sigma_u + \mu_u)(\sigma_d - \mu_d) + |\rho|^2} + \frac{\sigma_d + \mu_d}{(\sigma_u - \mu_u)(\sigma_d + \mu_d) + |\rho|^2} \right] - \frac{\gamma \alpha \sigma_u}{\alpha(\sigma_u \sigma_d + |\rho|^2) + 1} = 0,$$ (15)

$$\frac{\partial \Omega}{\partial \phi_d} = \Sigma^2 \phi_d - \frac{1}{2} \left[\frac{\sigma_u + \mu_u}{(\sigma_u + \mu_u)(\sigma_d - \mu_d) + |\rho|^2} + \frac{\sigma_d - \mu_d}{(\sigma_u - \mu_u)(\sigma_d + \mu_d) + |\rho|^2} \right] - \frac{\gamma \alpha \sigma_d}{\alpha(\sigma_u \sigma_d + |\rho|^2) + 1} = 0,$$ (16)

$$\frac{\partial \Omega}{\partial \rho} = 2\Sigma^2 \rho - \frac{1}{2} \left[\frac{2\rho}{(\sigma_u + \mu_u)(\sigma_d - \mu_d) + |\rho|^2} + \frac{2\rho}{(\sigma_u - \mu_u)(\sigma_d + \mu_d) + |\rho|^2} \right] - \frac{2\gamma \alpha \rho}{\alpha(\sigma_u \sigma_d + |\rho|^2) + 1} = 0.$$ (17)

$p = 0$ の解は常に存在する。そこで、解を $p = 0$ の場合と、$p \neq 0$ の場合に分けて考える。

$p = 0$ のとき、解はさらに 4 通りに分けられる：(i) 通常のカイラル締結相 ($\phi_u > 0, \phi_d > 0$)、(ii) 対称相 ($\phi_u \sim 0, \phi_d \sim 0$)、(iii),(iv) ひとつのフレーバーのカイラル締結だけが大きな値を持つ相 ($\phi_u > 0, \phi_d \sim 0$ または
は $(\phi_u \sim 0, \phi_d > 0)$。これら4つの相は、1次相転移線によって分けられている。また、$m = 0$ でも、アノマリー項によって ϕ_u と ϕ_d が混合しているため、$\phi_u = 0$ または $\phi_d = 0$ が常に解にならなければならない。例えば、

$\phi_u = \phi_d = 0$ は解になるが、$\phi_u \neq 0$ のとき、$\phi_d = 0$ は一般に解ではない。

次に $\rho \neq 0$ の解が現れる条件を考える。そのために、まず、有効ポテンシャルを $\rho = 0$ のまわりで展開する。

$$\Omega(m, \mu_f) = \Omega_0(m, \mu_f) + \Omega_2(m, \mu_f) \rho^2 + \cdots.$$ (18)

係数 Ω_2 は、$O(m, \mu^2_f)$ までで次のように求めることができる。

$$\Omega_2 = M^2 - \frac{2 \mu^2}{(\phi_0^2 - \mu^2)^2} \left(\frac{\mu^2}{(\phi_0^2 - \mu^2)^2} \right)^{-1}.$$ (19)

ここで ϕ_0 は、$m = \mu = 0$ のときのスカラーコンドルである。ここから、有限の pion 質量 $M^2 = m\Sigma^2/\phi_0$ が有限の ρ を嫌い、有限の μ_f が有限の ρ を好む場構理論が解にできる。$\Omega_2 = 0$ の条件から、pion 凝縮の生じ始める臨界 $\mu = \mu_c$ を読み取ると、この近似の範囲内では $\mu_c \lesssim M^2$ である。

数値的に求めた相構造を説明する前に、モデルの持つ対称性をまとめると。$\rho = 0$ のとき、有効ポテンシャルは荷電共役変換 $\mu_a \rightarrow -\mu_a$, $\mu_d \rightarrow -\mu_d$ について不変である。さらに、2つのフレーバー u, d の入れかえについても対称である。このため、相構造は、$\mu_a + \mu_d$ (または $\mu_a - \mu_d$) 平面において、eightfold の対称性を持つ。$\rho \neq 0$ のときは、フレーバーガとの荷電共役対称性は、同時変換 $(\mu_a, \mu_d) \rightarrow (-\mu_a, -\mu_d)$ のみを残して破れる。これに u, d フレーバーの入れかえ対称性を組み合わせると、fourfold 構造のみが残る。これを踏まえて、以下では、$\mu_q > 0, \mu_T > 0$ の場合に限って相図を提示する。

$m = 0$ のときの相図を、図1の左に示した。点線は、pion 凝縮を無視した場合の、スカラーコンドルに関する1次相転移線である。この場合、原点付近では、通常の $\phi_u, \phi_d \neq 0$ である相が存在する。pion 凝縮の存在を許すと、この相は pion 凝縮相に覆われてしまう。まず、μ_T の小さい部分を考える。$\mu_T = 0$ のとき、スカラーコンドル相 $\phi_u = \phi_d \neq 0$ と、pion 凝縮相 $\rho \neq 0$ は既に存在している。有限に小さい μ_T が導入さると、pion 凝縮相が基底状態として選択される。この振る舞いは、カイラルシングラ模型と同様である [6]。次に μ_T の大きい部分を考える。μ_T を小さく保ったまま μ_T を増やしていくと、あるところで2次相転移が起り、カイラル対称性の回復した相へ相転移する。μ_q を動かした場合、μ_T の大小に応じて、ϕ_d のみが値を持つ相、対称相へ1次相転移する。

次に、$m = 0.1 \neq 0$ のときの相図を、図1の右に示した。有限の m は、スクラーコンドル ϕ_u, ϕ_d を選ぶ配列条件である。そのため、ここでは m と μ_T という2つの配列条件が競合している。μ_T の小さい部分では、m が勝つため、通常のスクラーコンドル相が存在する。μ_T がある臨界値を超えると、pion 凝縮が現れる。ここで、μ_T が十分小さく、$\rho = 0$ の場合に、相転移の回数に目を付ける。μ_T をゼロから増加させていくと、$\phi_u = 0, \phi_d \neq 0$ 相から、$\phi_u \neq 0, \phi_d = 0$ 相へ、一度に相転移する。アノマリー効果のない ChRM 模型では、この相転移は、まず $\phi_u \neq 0, \phi_d = 0$ 相から $\phi_u = 0, \phi_d \neq 0$ 相へ、次に $\phi_u \sim 0, \phi_d \neq 0, \phi_d \sim 0$ 相へ、2 ステップで起こる[10]。その理由は、文献[10]の有効ポテンシャルが、$\rho = 0$ のとき、u と d ケース相と d ケース相の和で書けるため、それぞれのオーダーパラメータに関する相転移が独立に起こることからである。一方で、アノマリー効果は、2つのフレーバーを混合する。そのため、2つの相転移が相関し、非対称性 μ_T が大きくなると、両者は同時に起こる。じっさい、アノマリー効果を表す γ, α を大きくすると、1 ステップの相転移が2ステップに変わるが、μ_T の大きさも大きくなる。このような、アノマリーによるフレーバービクセラ相転移を1つにまとめた傾向は、NJL 模型でも知られている [9]。

最後に、この相転移の回数の、$T-\mu$ 相構造への影響を指摘する。普通は、相図上には一本の1次相転移線と、その端点としての臨界点が1つあると考えられている。$T = 0$ での相転移が2回あるということは、1次相転移線が2つあり、臨界点をそれぞれに対応して2つ存在することを示唆している。もしそ無限小の μ_T に対して直ちに相転移が2つにわかれならば、現実的には常に臨界点が2つ存在することになる。ところが、QCD にはアノマリーをはじめとするフレーバービクセラがあるために、小さな非対称性 μ_T に対しては、定性的な相構造は変化を受けないとある。ChRM 模型はこの点を端的に再現している。
図 1: $N_f = 2, \mu_q - \mu_T$ 平面上の相図。左がカイラル極限 ($m = 0$)、右が $m = 0.1$ の場合である。パラメータは、

\[\alpha = 0.5, \gamma = 1, \Sigma = 1 \]

とした。ラベル (ρ, ϕ_{ud}) は、大きな値を持つ凝縮を示す。1 次 (2 次) 相転移線は、実 (ダッシュ) 線で表される。eightfold 対称性を示すため、左図に、$\rho = 0$ を仮定した場合の 1 次相転移線を点線で示した。

4.2 $N_f = 3$

$N_f = 3$ の場合、一般に 3 つのカイラル凝縮 ϕ_u, ϕ_d, ϕ_s と、pion, kaon(K_0, K^\pm) 凝縮 $\rho_{ud}, \rho_{ds}, \rho_{su}$ がオーダパラメータになる。ここでは、オーダパラメータ行列 S として次のような Ansatz を採用する。

\[
S = \begin{pmatrix}
\phi_u & \rho_{ud} & -\rho_{su} \\
-\rho_{ud} & \phi_d & \rho_{ds} \\
\rho_{su} & -\rho_{ds} & \phi_s
\end{pmatrix},
\]

このとき、有効ポテンシャルは次のように求まる。

\[
\Omega = \Omega_0 + \Omega_a,
\]

ここで、Ω_0 は、通常の ChRM 模型の有効ポテンシャルである [11]。

\[
\begin{align*}
\Omega_0 &= \frac{\Sigma^2}{2} \left(\phi_u^2 + \phi_d^2 + \phi_s^2 + 2\rho_{ud}^2 + 2\rho_{ds}^2 + 2\rho_{su}^2 \right) - \frac{1}{4} \log \left\{ \left(\sigma_u^2 - \mu_u^2 \right) \left(\sigma_d^2 - \mu_d^2 \right) \left(\sigma_s^2 - \mu_s^2 \right) \right\} \\
&\quad + \left[\rho_{ds} \left(\sigma_u^2 - \mu_u^2 \right) + 2\rho_{ud}^2 \rho_{su}^2 \left(\sigma_d \sigma_s - \mu_d \mu_s \right) + 2\rho_{ds}^2 \left(\sigma_u^2 - \mu_u^2 \right) \left(\sigma_d \sigma_s - \mu_d \mu_s \right) \right] \text{(cyclic perm. of u,d,s)} \biggr)^2,
\end{align*}
\]

また、Ω_a はアノマリー部分である。

\[
\Omega_a = -\frac{3}{2} \log \left[\alpha \left(\sigma_u \sigma_d \sigma_s + \sigma_u \rho_{ud}^2 + \sigma_d \rho_{ds}^2 + \sigma_s \rho_{su}^2 \right) + 1 \right]^2.
\]

Ω は $\rho_{ud}, \rho_{ds}, \rho_{su}$ についての関数であるため、ギャップ方程式は、常に $\rho_{fs} = 0$ という自明な解を持つ。一方で、スカラ凝縮については、アノマリー項のために、$m = 0$ でも $\phi_f = 0$ が常に解になるとは限らない。また、ギャップ方程式を数値的に行うことで、2 つ以上のメソ凝縮が同時に値を持つような状態は基底状態にならないことがわかった。

$N_f = 3$ の場合、オーダパラメータが 6 つのため、相転移はひじょうに複雑になる。そのため、数値計算結果を提示するまえに、定性的に相転移を理解するための助けになる 3 つの見方をまとめると。
(i) カイラルシグマ型とのアノラジー
文献[10]で指摘されたように、ChRM 模型のポテンシャルは、カイラルシグマ型のポテンシャル部分と類似している。そのため、化学ポテンシャルの小さな領域での相構造は、カイラルシグマ型による予言を再現する。すなわち、\(\mu_I > m_{\pi} \) を境に pion 凝縮が、\(\mu_I > m_{K} \) を境に kaon 凝縮が生じ、さらにそれらのメンソ凝縮相は、1 次相転移により分けられている。

(ii) カイラル対称性の回復
ChRM 模型は、カイラルシグマ型とは異なり、カイラル対称性の回復を記述することができる。このため、pion 凝縮と kaon 凝縮の間に、新たな種類の競合が生じる。例として、\(\mu_Y > \mu_I > \mu_q = 0 \) という状況を想定する。ある大きな \(|a| \) に対しては、シグマ型が予言するように、kaon 凝縮相 \(\rho_{us} \neq 0 \) が基底状態になる。このとき、フレーバー d のカイラル凝縮も存在している (\(\phi_d \neq 0 \))。ここで、\(\mu_I \) を固定したまま、\(\mu_Y \) をさらに増加させる。あるところまで増大させると、大きな \(|a| \) のために、フレーバー s についてのカイラル対称性を回復させた方が、より安定な基底状態が得られるようになる。すなわち、\(\rho_{us} = \phi_s = 0 \) が基底状態として選ばれる。このとき、\(\mu_I, \mu_d \) は小さいままであるため、u, d 部分のカイラル対称性は破れたままである。\(\mu_I \) が pion 質量を越えていれば、u, d については、それぞれのカイラル凝縮 \(\phi_u, \phi_d \) が大きな値を持っているよりも、pion 凝縮 \(\rho_{ud} \) を込んだ方がより安定な基底状態になる。ここのままでとまると、\(\mu_Y \) の増加に伴い、kaon 凝縮相 \(\rho_{us} \neq 0, \phi_d \neq 0 \) から、pion 凝縮相 \(\rho_{ud} \neq 0, \phi_s = 0 \) へと相転移が起こったことになる。同じ議論は、\(\mu_Y = \mu_I \) の役割を交換しても行うことができ、\(\mu_I \) の大きな領域に kaon 凝縮相が見出される。このような振る舞いは、シグマ型では見られなかったものであり、カイラル相転移が本質的役割を果たしている。カイラル相転移を記述できる NJL 模型でも同様の振る舞いが見出されている【8】。

(iii) アノラリー効果
アノラリー項は、フレーバー混合効果を表す。\(N_f = 3 \) の場合、メンソ凝縮が存在しなければ、アノラリー項は \(\log(\alpha_\sigma \sigma_\sigma + 1) \) という形になり、3 つのカイラル凝縮を混合する。1 つのカイラル凝縮が小さくなると、この混合項は小さくなり、他の 2 つのフレーバー間の混合効果は小さくなる。一方、メンソ凝縮が有限に存在する場合には、新たな混合が生じる。例えば pion 凝縮 \(\rho_{ud} \) が有限のとき、一般に \(\phi_u, \phi_d \) は小さくなるため、\(\sigma_u \sigma_d = \sigma_u \sigma_d \) という項は小さくなる。ところが、(23) 式にあるように、\(\phi_u \rho_{ud}^2 \) の項は大きいままである。このため、カイラル凝縮とメンソ凝縮が同時に相転移を起こす様子も観察されている。

4.2.1 \(\mu_I - \mu_Y \) 平面
\(\mu_I - \mu_Y \) 平面（\(\mu_q = 0 \)）における相図を図2に示した。このとき、有効ポテンシャルは、\(\mu_Y \to - \mu_Y \) について対称であり、さらに \(\mu_I \to - \mu_I \) と u, d クォークの入れかえを同時に行える対称であるため、相図は \(\mu_I > 0, \mu_Y > 0 \) に限って提示する。

まずカイラル極限を考える (左)。化学ポテンシャルの小さな領域では、カイラルシグマ型の予言と一致して、\(\mu_I > \mu_Y \) では pion 凝縮が、\(\mu_I < \mu_Y \) では kaon 凝縮が好まれる。ところが、ある点を境にして、\(\mu_I > \mu_Y \) で kaon 凝縮が、\(\mu_I < \mu_Y \) で pion 凝縮が基底状態になる。先に説明したように、この理由は、カイラル対称性の回復の効果である。

有限のクォーク質量が存在するとき (右) には、化学ポテンシャルの小さな領域で、通常のスカラ凝縮相が現れて、\(\phi_s \) に関連する 1 次相転移線では、\(\rho_{us} \) は不連続に値を変える。これは、メンソ凝縮とカイラル凝縮が、アノラリー項を介して相関しているためである。

4.2.2 \(\mu_q - \mu_I \) 平面
\(\mu_q - \mu_I \) 平面（\(\mu_Y = 0 \)）における相図を図3に示した。このとき、有効ポテンシャルは、\(\mu_q \to - \mu_q \) について対称であり、さらに \(\mu_I \to - \mu_I \) と u, d クォークの入れかえを同時に行っても対称である。このため、相図は \(\mu_q > 0, \mu_I > 0 \) の場合のみ提示する。
図 2: $N_f = 3$, $\mu_f - \mu_Y$ 平面上の相図 ($\mu_q = 0$)。左がカイラル極限、右が $m_u = m_d = 0.02$, $m_s = 0.1$ の場合である。右の図で、下(上)の縦に長い領域は、ϕ_u, ϕ_d, ϕ_s (ϕ_u, ϕ_d) が大きな値をもつ相である。その他のパラメータは図 1 と同じ。

カイラル極限では (左)、無限に小さな μ_f に対して、基底相態は直ちに pion 凝縮相になる。また、相図上には、μ_q の大きさところで、kaon 凝縮相が存在する。$\mu_Y = 0$ における相図であるため、この結果は興味深い。kaon 凝縮が現れる理由は、カイラル対称性の回復の効果として説明できる。すなわち、この領域では μ_u が他の 2 つのフレーブの化学ポテンシャルより大きくなるため、フレーブ u のカイラル対称性が先に回復する。いま、カイラル極限を考えているために、kaon 質量がゼロであることに注意すると、残りの d, s フレーブ自由度は、有限の $\mu_s - \mu_u$ により、それぞれ単独でスカラ凝縮を作るよりも、kaon 凝縮を組んだ方がエネルギ的に安定であることが理解できる。

有限のクォーク質量が導入されると (右)、スカラ凝縮相が μ_f の小さい領域に現れる。アノマリーによるフレーブ混合効果として、ϕ_u, ϕ_d, ϕ_s の 3 つのカイラル凝縮が、同時に相転移する様子が確認できる。さらに、pion 凝縮 ρ_{ud} とカイラル凝縮 ϕ_s の、同時相転移も存在する。これは、ρ_{ud} と ϕ_s を混合する、3 フレーブ特有のアノマリー効果の表れである。

4.2.3 $\mu_q - \mu_Y$ 平面

最後に、$\mu_q - \mu_Y$ 平面 ($\mu_f = 0$) における相図を図 4 に示した。有効ポテンシャルは、$\mu_q \rightarrow -\mu_q$ と $\mu_Y \rightarrow -\mu_Y$ の変換を同時に行ったときに対称である。そのため、$\mu_Y > 0$ の場合の相図を示す。また、$\mu_f = 0 \leq m_s$ であるため、相図上に pion 凝縮相は現れない。

カイラル極限 (左) の場合を考える。$\mu_q = \mu_Y = 0$ のとき、通常のカイラル対称性の破れた相と、pion 凝縮相、kaon 凝縮相が競合している。$\mu_Y > 0$ では、μ_f が負の無限小であると仮定することで、K^0 凝縮相を基底状態に選ぶことができる (アイソビン SU(2) 対称性に自発的に破れる)。kaon 凝縮相内部の ϕ_s についての 2 次相転移線では、kaon 凝縮 ρ_{ps} の値も不連続に変化する。これは、アノマリー項によって ϕ_s と ρ_{ps} が混合しているためである。kaon 凝縮相は、μ_Y の大きい場所で 2 次相転移を、μ_q の大きい場所で 1 次相転移を起こし、対称相などに移る。

有限の質量がある場合 (右)、μ_q を大きくするにつれ、ϕ_u, ϕ_d, ϕ_s のスカラ凝縮がある相から、一度の相転移で対称相へ移る。フレーブ混合を無視すると、μ_f とクォークは質量が異なるため、$\mu_Y = 0$ でも、一般に異
図 3: \(N_f = 3, \mu_q, \mu_I\) 平面上の相図 (\(\mu_Y = 0\))。左がカイラル極限、右が有限質量の場合である。右の図で、横に長い左下の領域は、\(\phi_u, \phi_d, \phi_s\) が大きな値をもつ相である。その他のパラメータは図 2 と同じ。

なる \(\mu_q\) で相転移が起こる。しかし、この ChRM 模型では、アノマリーによるフレーバーハイブリッドモデルの大きさを示す効果、を示す。さらに、\(\mu_I\) 平面上の臨界点が、小さな \(\mu_I\) に対しては 1 つであることを示唆している。

\(N_f = 2\) の場合、アノマリー項は \(u,d\) フレーバーのカイラル凝縮を混合する。この効果により、両者に相転移は、小さな \(\mu_I\) に対しては同時に起こる。このことは、\(T, \mu_q\) の相転移をもつ特異点が、小さな \(\mu_I\) に対しては 1 つであることを示唆している。

\(N_f = 3\) の場合、アノマリー項は \(u,d,s\) フレーバーのカイラル凝縮を混合する。その場合、\(N_f = 2\) の場合と同様に、これらの相転移は同時に起こる傾向がある。さらに、メソニック Condensation の際にも混合があることがわかった。これにより、メソニック Condensation とカイラル凝縮の相転移も、同時に起こる傾向がある。

さらに、\(\mu_I\) の大きな場所での kaon 凝縮や、\(\mu_Y\) の大きな場所での pion 凝縮などの、カイラルシグマモデルからは予測されていなかった相の特徴を示した。これにより、一部のフレーバーに対するカイラル対称性が復帰するために起こる効果である。この効果はアノマリーとは直接関係なく、アノマリー効果を取り入れていない ChRM 模型でも見つかっている [11]。

ChRM 模型を用いた以上の考察は、フレーバーハイブリッドモデルの大きさを示す効果、を示す。さらに、\(\mu_I\) の大きな場所での kaon 凝縮や、\(\mu_Y\) の大きな場所での pion 凝縮などの、カイラルシグマモデルからは予測されていなかった相の特徴を示した。これにより、一部のフレーバーに対するカイラル対称性が復帰するために起こる効果である。この効果はアノマリーとは直接関係なく、アノマリー効果を取り入れていない ChRM 模型でも見つかっている [11]。

ChRM 模型を用いた以上の考察は、フレーバーハイブリッドモデルの大きさを示す効果、を示す。さらに、\(\mu_I\) の大きな場所での kaon 凝縮や、\(\mu_Y\) の大きな場所での pion 凝縮などの、カイラルシグマモデルからは予測されていなかった相の特徴を示した。これにより、一部のフレーバーに対するカイラル対称性が復帰するために起こる効果である。この効果はアノマリーとは直接関係なく、アノマリー効果を取り入れていない ChRM 模型でも見つかっている [11]。

参考文献

図4：$N_f = 3$, $\mu_q - \mu_Y$ 平面上の相図 ($\mu_I = 0$)。左がカイラル極限、右が有限質量の場合である。パラメータは図2と同じ。

