Numerical Study of The Effect of Traffic Restriction on Air Quality in Beijing

Qizhong Wu¹,²,³, Zifa Wang¹, A. Gbaguidi¹, Xiao Tang¹,² and Wen Zhou³
¹LAPC/NZC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
²Graduate University of Chinese Academy of Sciences, Beijing, China
³Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Abstract

The Nested Air Quality Prediction Modeling System (NAQPMS), in coupling with the fifth-generation NCAR/Penn State Mesoscale Model (MM5), is employed to assess the impact of vehicle traffic restriction on air quality in Beijing within pre-Olympic environmental measures implemented from 17th to 20th August 2007. Predictions are compared against meteorological and air quality observed data and validation shows model good performance as a whole. Sensitivity experiments, including the baseline and traffic control scenarios, are designed to estimate the potential reduction of nitrogen dioxide (NO₂) and particulate matter (PM10) concentrations during the traffic restriction. Results indicate that the NO₂ concentration in Urban Beijing is reduced by 16%-32%, with the average of 21%, while NOx emissions are lowered within 28%; the primary PM10 concentrations is also reduced by 6%-15%, lower than the decreased percentages of NO₂ concentration. The results show that the most significant reduction of air pollutants occurs in Urban Beijing where the restriction has been mainly imposed. This study demonstrates the efficiency of traffic restriction measure in air quality improvement over Beijing.

1. Introduction

Challenge and opportunity characterized the award of the 2008 Olympic Games to Beijing. China’s rapid economic development, with GDP growing at more than 10% per year, has generated widespread concern about the environmental implications for the world.

As known, vehicles in Beijing produced more than 100,000 tons of NOx per year (Hao et al. 2001), contributed to 46%, 78% and 83% of NOx, CO and HC emissions, respectively (Hao et al. 2006). Also, vehicle tailpipe emissions and road fugitive dust contributed to 13.6% and 32.8% of PM10 ambient concentration respectively (Chan et al. 2005; Hao et al. 2006). Within gas phase species, NOx is the major contributor but particles are the most important pollutants for visibility. Health effects may include increased susceptibility to respiratory illness and reduced lung capacity (Street et al. 2007).

In that context, one of implemented actions consisted of traffic restriction plan through alternative odd-even plates numbered calendar by Beijing-registered automobiles applied from 17th to 20th August 2007 to test the impact of traffic on Beijing air quality. It was the first experimented vehicles traffic restriction in Beijing. Due to the fact that traffic restrictions implemented during Beijing Olympics 2008 were combined with many other emissions abatement measures, making difficult separating modeling evaluation of traffic restriction effect, the environment test during the 17-20th August 2007 offers suitable conditions to properly quantify the potential impact of vehicular emissions abatement on air quality in Beijing.

In this paper, the model is used to illustrate the effect of the traffic restriction on air quality in Beijing, particularly NOx and PM10 variations. Previously, analysis on NOx reduction within traffic restriction during Sino-African Summit was performed using the Dutch-Finnish Ozone Monitoring Instrument (OMI) satellite data (Wang et al. 2007). Similarly, based on two emissions scenarios (baselines and control scenario) under the same meteorological field, the main purpose of the present modeling study is therefore to quantify the contribution of the traffic restriction implemented during the Pre-Olympic period, to air quality improvement over Beijing. The effect of the traffic restriction is not only examined in Urban Beijing, but also in surrounding suburban areas.

2. Methodology

2.1 Model description and setup

The chemical transport model used in this work is the NAQPMS, developed by the Institute of Atmospheric Physics, Chinese Academy of Sciences. The model consists of a three-dimensional system with various options for representing the physical and chemical processes describing regional and urban scale atmospheric pollution (Wang et al. 2006). Its chemical transport module reproduces the physical and chemical evolution of reactive pollutants by solving the mass balance equation following vertical coordinates (Wang et al. 2001). The gas chemistry mechanism has been updated to CBM-Z (Li et al. 2007).

2.2 Meteorological simulation

The MM5 v3.6 is used as meteorological driver for the NAQPMS. National Centers for Environmental Prediction (NCEP) final analysis data (FNL), with 1° × 1° spatial resolution and four times a day temporal resolution, is used as the initial and boundary condition for the MM5 simulations. The selected schemes for the present study are simple ice for explicit moisture, Grell cumulus, MRF for PBL and cloud scheme for atmospheric radiation (Gao et al. 2007).

Four nested grids for horizontal resolution of 81 km, 27 km, 9 km and 3 km with the center located at (35.0°N, 110°E) were used for both MM5 and NAQPMS models shown in Fig. 1. The NAQPMS model has 20 vertical layers extending from 1000 hPa to 100 hPa with the p-level vertical coordinate, and is interpolated from 23 sigma levels of MM5 using INTERPB module. The simulation period is 10th–21st August 2007, with predicting cycle method, consisting of making 36-hr simulation and taking the last 24-hr simulation as NAQPMS meteorological driver in every predicting cycle, since the MM5 simulations are initialized with a cold start, and might take at least 12 hours on average for the model to spin up (Colle et al. 1999; JEFF C. F. Lo et al. 2007).

The MM5 simulation with gridded FDDA (four dimensional data assimilation) using Newtonian nudging is accounted to restrain the model’s solutions from deviation. The land use data in Beijing (shown in Fig. 1), provided by the Beijing Institute of Surveying and Mapping (BISM), is updated to improve MM5 simulation.

Evaluation of MM5’s meteorological hourly simulated results at the surface layer of domain 4 is performed by statistical parameters, including Mean bias (MB), Normal mean bias (NMB), Normal mean error (NME) and Correlation coefficient (R), at six meteorological stations in Urban Beijing. The statistical results in
Traveled (VMT) is calculated as following:

\[
VMT_{\text{(county, rclass)}} = RLength_{\text{(county, rclass)}} \times TFlow_{\text{(county, rclass)}} \times Rate_{\text{vtype}}
\]

where the “vtype” is vehicle type, the “rclass” is road class and the “Rate_{\text{vtype}}” is the rate of the “vtype” vehicles in each county. The units of RLength, TFlow, VMT and Rate_{\text{vtype}} are mile, number per year, mile per year and %. With the same fuel content in each county, the VMT and the averaged speed of vehicles of each county, road class and vehicle type are input into SMOKE mobile module, while the meteorological factor is provided from the MM5 model to estimate the model-ready gridded mobile emissions. Taking into account the spatial distribution of the SMOKE mobile emission as horizontal factor, and combining with the amount of the mobile emissions from the Tsinghua University, we estimate the mobile emission in Beijing.

2.3 Emission process and scenario setting

The Sparse Matrix Operator Kernel Emissions (Houyoux and Yukovich 1999) model is applied to deal with the emissions inventory and provide gridded emission data for the NAQPMS model. Three categories of emissions are considered in this study: the regional emission inventory from TRACE_P (Streets et al. 2003) with 10 km resolution, updated for the year 2002; the power plant emission database of Beijing and its surrounding provinces including Tianjin, Hebei, Shanxi, Inner Mongolia and Shandong provinces; detailed local source emissions database of Beijing city from the Beijing Environmental Protection Bureau (EPB), with base-year of 2004.

In order to obtain high resolution of emissions, the area emissions of Beijing have been spatially allocated based on related spatial factor, such as its population data provided from Land Scan 2005 Global Population Database. The road dust emission is spatially distributed according to the road length density; the compiled road statistics include arterial and local ways. Point source emissions (power plant and other large point sources) are also updated according to the study of (Hao et al. 2007), and accounted into the SMOKE model.

Based on the Road Network in Beijing, the traffic flow from Beijing Transport Research Center (BTRC, report 2007) and the mobile emissions provided from the Tsinghua University, we estimated the spatial distribution of the mobile emissions using the SMOKE mobile module. The traffic flow data has been also collected from (BTRC, report 2007), and evaluated on each class road of each county. With the road-length (RLength) and the traffic flow (TFlow) on each class road in counties, the Vehicle Miles Traveled (VMT) is calculated as following:

\[
VMT_{\text{(county, rclass)}} = RLength_{\text{(county, rclass)}} \times TFlow_{\text{(county, rclass)}} \times Rate_{\text{vtype}}
\]

Table 1 show in general that MM5 is able to simulate the characteristics of temperature (T), relative humidity (Rh) and pressure (P). However, the model over-predicts the wind speed (Ws) with the NMB and NME higher than 50%.

Table 1. Statistical parameter of the MM5 performance. The unit of NMB and NME is %.

<table>
<thead>
<tr>
<th>Var</th>
<th>Obs.</th>
<th>Sim.</th>
<th>MB</th>
<th>NMB</th>
<th>NME</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (°C)</td>
<td>27.2</td>
<td>29.3</td>
<td>2.1</td>
<td>8.5</td>
<td>9.0</td>
<td>0.84</td>
</tr>
<tr>
<td>Rh (%)</td>
<td>68.6</td>
<td>52.8</td>
<td>-15.8</td>
<td>-20.6</td>
<td>22.9</td>
<td>0.65</td>
</tr>
<tr>
<td>Ws (m s⁻¹)</td>
<td>1.36</td>
<td>2.08</td>
<td>0.72</td>
<td>111.1</td>
<td>138.6</td>
<td>0.26</td>
</tr>
<tr>
<td>P (hPa)</td>
<td>1001.0</td>
<td>999.5</td>
<td>-1.5</td>
<td>-0.15</td>
<td>0.18</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Note that the locations of the six concerned stations (Olympic center, Wukesong, Xiamongtang, Guangxiangtai, Chaoyang and Shunyi Station) are shown in Supplement 1.

a. Baseline scenario

The total amount of emissions in Beijing for baselines scenario (without traffic restriction) is provided and compared with the emissions inventory in Beijing reported by Streets et al. (2003) (Table 2). Comparison shows that although the number of the vehicles increased rapidly in recent years, the NOₓ, CO and volatile organic compound (VOC) emissions did not display obvious increment, indicating the effectiveness of the restricted standards for vehicles.

b. Control scenario

The daily traffic restriction covered inner-Ring6 from 6 am to 11 pm. In the control scenario of this study, the mobile emission was reduced from 6 am to 11 pm (Beijing Time) during 17~20° August, 2007 according to estimated decreased emissions in Beijing, provided by the Department of Environment Sciences and Engineering, Tsinghua University (Table 3). The difference of NOₓ and primary PM10 emissions between baselines and control scenario are displayed in Fig. 2; the delta-emit corresponding to subsequent pollutants reduction is defined as baselines scenario.

Table 2. The amount of emissions in Beijing in some studies. (Unit: 10³ tons yr⁻¹)

<table>
<thead>
<tr>
<th>Species</th>
<th>NOₓ</th>
<th>PM10</th>
<th>CO</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>201.3</td>
<td>157.3</td>
<td>1275.8</td>
<td>345.2</td>
</tr>
<tr>
<td>(Streets et al. 2003)</td>
<td>228.1</td>
<td>-</td>
<td>2727.6</td>
<td>394.9</td>
</tr>
<tr>
<td>(Streets et al. 2007)</td>
<td>212.4</td>
<td>66.0</td>
<td>2340.0</td>
<td>339.6</td>
</tr>
<tr>
<td>(Ohara et al. 2007)</td>
<td>232.5</td>
<td>-</td>
<td>1690.0</td>
<td>-</td>
</tr>
<tr>
<td>(An X et al. 2007)</td>
<td>227.3</td>
<td>106.9</td>
<td>1021.8</td>
<td>285.6</td>
</tr>
</tbody>
</table>
emission values minus control scenario emission values during the traffic restriction. Note that, baseline emissions are unchanged outside the urban area.

3. Results and discussion

3.1 Meteorological synoptic analysis

The weather condition was stable over Beijing region during the traffic restriction. There was an adverse weather conditions characterized by diurnal high temperature (32°C), weak wind speed (< 1 m s⁻¹) with high pressure, weak variation of relative humidity, generally unfavorable for pollutants transport and diffusion, and may catalyze high pollution. Actually, such weather is favorable for assessing pollutants concentration variations between baselines scenario and control scenario since the weak pollutants transport minimizes uncertainties.

3.2 Nitrogen dioxide (NO₂) concentration variation

For predictions evaluation, daily monitoring concentrations of PM10 and NO₂ over the National Standard Air Quality Observation Stations (NSAQ Stations), provided by EPB, are compared against NAQPMS results. NNSAQ Stations located at the urban are shown in Supplement 1.

Under both scenarios, simulated and observed NO₂ concentrations in Urban Beijing show good agreement (Fig. 3). This illustrates the accuracy of emission used in this study as discussed in Section 2.3.

The averaged reduction ratio of NO₂ concentration from 17th to 20th August is estimated as about 21% in Urban Beijing. Decreased NO₂ emission in traffic control scenario is more than 42,000 tons/yr; versus more than 200,000 tons/yr in the whole Beijing City and 113,000 tons/yr in Urban Beijing in the baseline scenario. The daily reduction ratio of NO₂ emission is 37% in Urban Beijing from 6 am to 11 pm during the traffic restriction; the average reduction ratio of NO₂ emission from August 17th to August 20th is about 28%, greater than that of NO₂ concentration. Since the present study is focused mainly on the relative changes in emissions during the traffic restriction, under the same meteorological conditions, the systematic errors associated with the model simulation and systematic mismatches in emission sources, are not expected to influence significantly conclusions drawn from the present analysis. Thus, one of the plausible reason of the discrepancy between NO₂ and NO₂ reduction percentages is the influence of atmospheric complex diurnal and nighttime’s interac-

The PM10 reductions occur mainly in Urban Beijing and its surrounding northern counties, similarly to the spatial extent of NO₂ reduction region focused above according to the dominant wind direction. In the urban, the reduced concentration of primary PM10 is about 1 µg m⁻³, with 6%~15% as resulting ratio; reduced PM10 emission is estimated as about 10%. The traffic restriction reduces both the primary PM10 from vehicles and the secondary PM10 from photochemical reactions. The latter is usually in fine mode (PM2.5) as inhalable particles.

All the data used for the validation analysis (Fig. 3) were obtained within the Urban Beijing area where impacts of reduction in emissions are expected to be greatest. Evaluations of the impact of the emission reduction are carried out over further downwind area (suburban area) in this study (Fig. 4), although validations of model predictions are not made there. For the case of PM10,
Fig. 4. The spatial distribution of NO$_2$ concentration reduced ratio (%), averaged from August 17th, 00:00 to August 20th, 23:59. The unit of arrow is m3s$^{-1}$.

Acknowledgment

This work is funded by the National Basic Research 973 Grant (2005CB422205) and NSFC grant (40775077).

Supplements

The Locations Monitoring Station and details variations of PM10 mass concentration in the urban are included in Supplement 1 and Supplement 2.

References

Gbaguidi, A. E., J. Chen, Z. Wang, and C. Gao, 2007: Seasonal interactive relationships between tropospheric nitrogen dioxide surface concentration and nitrate dry deposition over China winter/summer compared analysis. Progress in Environmental Sciences and Technology, 1, 32, USA.

Manuscript received 8 January 2010, accepted 7 May 2010 SOLA: http://www.jst.go.jp/browse/sola/