ディジタルフィルタ分析器の騒音測定への応用*

大門 静史郎** 山田 英美**
（松浦製作所㈱）

1. まえがき

最近のディジタル信号処理技術の進歩により，
FFT 分析器，ディジタルフィルタ分析器などの多く
の種類のディジタル信号処理機器が市販されている。
とおり，FFT分析器は，振動・騒音測定に幅広く使
用されている。しかし，ディジタルフィルタ
分析器は，リアルタイムで1/1，1/3オクタープ分析
を行うなど，FFT分析器にはない特長を備えている
ため，騒音測定の分野において幅広く利用されて
いる。また最近，計算機能を備えたディジタルフィ
ルタ分析器も市販されているため，音響インテンシ
ティのマッピング図の作成，音響パワー測定，残響
時間測定などの高度な処理が，コンピュータなしの
分析器単独でも行えるようになっている。

本文では，ディジタルフィルタ分析器とFFT分析
器の原理を整理した後，両方の分析器の相違点，デ
ィジタルフィルタ分析器の可能な応用，及びディジ
タルフィルタ分析器を用いた測定例を解説する。

2. ディジタルフィルタ分析器とFFT分析器の原理

ディジタルフィルタ分析器とFFT分析器などの周
波数分析器は，図－1 に示すとおり，基本的には，
フィルタ，RMS検波器，ディスプレイ（またはレコ
ーダ）から構成される。

表－1 周波数分析器のブロック図

<table>
<thead>
<tr>
<th>分析器の種類</th>
<th>被測定周波数帯域</th>
<th>RMS検波器の種類</th>
</tr>
</thead>
<tbody>
<tr>
<td>アナログフィルタ</td>
<td>一定比率</td>
<td>アナログフィルタ</td>
</tr>
<tr>
<td>分析器</td>
<td>帯域幅</td>
<td>ディジタルフィルタ</td>
</tr>
<tr>
<td>ディジタルフィルタ</td>
<td>一定比率</td>
<td>ディジタルフィルタ</td>
</tr>
<tr>
<td>分析器</td>
<td>帯域幅</td>
<td>ディジタル検波器</td>
</tr>
<tr>
<td>FFT分析器</td>
<td>一定帯域幅</td>
<td>FFT演算</td>
</tr>
</tbody>
</table>

2.1 フィルタ

（1）アナログ（1/1，1/3オクタープ）フィルタ
従来のアナログフィルタは，コイル，抵抗器，
コンデンサなどの電子部品から構成され，これらの
部品の組合せによってフィルタ特性が決定される
（図－2 参照）。

（2）ディジタル（1/1，1/3オクタープ）フィルタ
ディジタルフィルタは，加算器，乘算器，遅延素子
などを使ってディジタル計算により，フィルタ処
理を行う（図－2 参照）。

係数（図－2において，A0，B1，B2）を適当に選
択することにより，（1/1，1/3オクタープなどの
アナログフィルタと同じ特性を実現することも可能
である。ただ，アナログフィルタの場合，入力する
アナログ信号を連続的に処理するのに対して，ディ
ジタルフィルタの場合，離散化された時間信号をサ
ンプル対サンプルで処理することは異なるが，た
とえば，自動車の通過騒音のような非定常連続信号

*Application of Digital Filter Analyzer to Noise
Measurements
**Seishiro Daimon，Hidemi Yamada (Matsubo Equipment & Instrument Corp.)

図－1 周波数分析器のブロック図

図－2 アナログフィルタ・ディジタルフィルタの原理図
図-3 デジタルフィルタ分析器によるリアルタイム分析の原理図

図-4 FFT分析器のブロック図

図-5 RMS検波器のブロック図

2.2 RMS検波器

2.2.1 アナログ信号を入力してRMS検波器を用いて検波すると、図-5に示すように、RMS検波器は、検波時間に関係なく、一定の値（たとえば、1024周期）の検波結果を出力する。この検波結果をメモリにストレージするデータに対して、FFT演算を行なうことに注意を要する。

(1) FFT演算

FFT演算によって実現されるフィルタ帯域幅は、中心周波数に関係なく、一定である。すなわち、FFT分析器は、一定帯域幅分析器である。

(1) FFT演算

FFT演算によって実現されるフィルタ帯域幅は、中心周波数に関係なく、一定である。すなわち、FFT分析器は、一定帯域幅分析器である。

(1) FFT演算

FFT演算によって実現されるフィルタ帯域幅は、中心周波数に関係なく、一定である。すなわち、FFT分析器は、一定帯域幅分析器である。

(1) FFT演算
果から1/1, 1/3オクターブ分析結果を求めるために
は、合成を行う必要がある。
(2) デジタルフィルタ分析器では、時間信号を
サンプル対サンプルで処理するに反し、FFT分析器
では、時間信号をブロックとして処理する。自動
車の通過騒音のような非定常連続信号は、デジタ
ルフィルタ分析器で精度よく分析できるが、FFT分
析器で分析できない。
(3) 騒音計のJIS, IEC規格に準拠して、Fast,
Slowなどの周波数での周波数分析を、デジタルフ
ィルタ分析器で行えるが、FFT分析器では行えない。
以上のことにより、デジタルフィルタ分析器が
騒音分析の分野において、幅広く使用されている。
3. デジタルフィルタをベースとするリアルタイム分析器の概要
デジタルフィルタをベースとするリアルタイム
分析器の一例のブロック図及び写真を、それぞれ図
- 6, 写真 - 1 に示す。
このリアルタイム分析器の場合、図 - 6 に示すと
おり、2 チャンネルの時間信号をデジタルフィル
タで1/N (N = 1, 3, 12, 24) オクターブ分析後、
信号処理器で加減乗除の計算を行うことにより、こ
の分析器単独で、音響インテンシティ測定を行うこ
とができる。
また、この分析器の主な応用例として、以下のも
のが考えられる。
* 自動車などの通過騒音などの非定常連続信号
測定
* 音響インテンシティ測定
* 音響パワーティメント
* 建築音響測定（残響室法吸音率、透過損失、
残響時定等）
4. デジタルフィルタをベースとするリアルタイム分析器による測定例
デジタルフィルタをベースとするリアルタイム
分析器（図 - 6, 写真 - 1 参照）による測定例を、
以下に示す。なお、この分析器の場合には、計算機
能を内蔵しているため、コンピュータなしで以下の
すべての測定を行っている。
4.1 非定常連続信号測定
この分析器の場合、最大1,000個の1/3オクターブ
スペクトルを、5ミ秒以上で24時間以下の中間隔
でストアできる、内部データメモリを備えており、
非定常連続信号の（たとえば 1/3オクターブ）スペ
クトルを、このメモリにストアした後、分析器の
ディスプレイ上に、三次元マップ、コンターマップ
として表示する。また、必要に応じてブロックで作
図することがができる。
図7 車両の回転数上昇・下降試験時の騒音分析結
果の三次元マップ、コンターマップを、それぞれ図
- 7, 図 - 8 に示す。
4.2 残響時間測定
以下の手順に従って、残響時間測定を行う。
① 分析器から出力される広帯域ノイズ信号を、
測定対象の部屋へ放射する。
② 分析器からの命令により、ノイズ信号を遮断
する。
③ これに同期させて、時間とともに減衰する
1/1, 1/3オクターブスペクトルを内部データメモリ
へストアする。
④ ストアされたスペクトルから、1/1, 1/3オク
ターブの中心周波数ごとの残響時間を計算する。
⑤ その時の計算結果を、分析器のディスプレイ
上に表示する。1/1, 1/3オクターブスペクトルの
三次元マップ及び、1/1, 1/3オクターブの中心周
波数ごとの残響時間の図の例を、それぞれ図-9,
4.3 音響インテンシティ測定

写真−2 に示すように、この分析器、減衰インテンシティプローブ、インテンシティ校正器を用いて、音響インテンシティ測定を行う。この分析器の場合、表−2 に示すように、多くの測定項目を内蔵しているので、この分析器単独で、音響インテンシティ、リアクトブインテンシティなどを測定できる。さらに、分析器内蔵の計算機能を利用することにより、三次元マップ、コンターマップ、ベクトルマップなどを分析器のディスプレイに表示することができます。また、必要に応じて、プロットで作図することもできる。

ドリルについての音響インテンシティの三次元マップ、コンターマップ、ベクトルマップ、数値マップをそれぞれ図−11～図−14に示す。
表-2 準測する関数

<table>
<thead>
<tr>
<th>No.</th>
<th>準測する関数</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>()</td>
</tr>
<tr>
<td>1</td>
<td>オートスペクトル (チャンネルA)</td>
</tr>
<tr>
<td>2</td>
<td>オートスペクトル (チャンネルB)</td>
</tr>
</tbody>
</table>
| 3 | 平均スペクトル

 $(1/2(A+B))^2$ |
| 4 | インテンシティ

 $A+B \int (A-B)dt$ |
| 5 | リアクティブインテンシティ

 $(A+B)(A-B) \int 2\pi dr$ |
| 6 | 粒子速度

 $\left(\frac{1}{\pi^2} \int (B-A)dt \right)^2$ |
| 7 | クロススペクトル (実部)

 AB |
| 8 | クロススペクトル (虚部)

 $A \neq B$ |
| 9 | 振動速度

 $(f dt)^2$ |
| 10 | メカニカルパワー

 $AIB dt$ |
| 11 | 時間信号

 (チャンネルA)

 a |
| 12 | 時間信号

 (チャンネルB)

 b |

$A=A(t)$ = フィルタ出力 (チャンネルA)
$B=B(t)$ = フィルタ出力 (チャンネルB)
a, b: チャンネル A と チャンネル B の時間信号
※: ヒルベルト変換
－：時間平均

4.4 音響パワーマップ
分析器内蔵の計算機を利用してすることにより、音響インテンシティの測定結果から、音響パワーランキングを計算して、パワーランキングを分析器のディスプレイ上に表示することができる。

図-11 三次元マップの例
図-12 コンターマップの例
図-13 ベクトルマップの例
図-14 数値マップの例

同じドリルについての音響インテンシティ測定面を分割した時のパワーランキング図を、図-15に示す。
このほか、分析器内蔵の計算機を利用してすることにより、ISO、JIS規格の音響パワーランキング規格に準拠
5. あとがき

本文では、ディジタルフィルタをベースとするリアルタイム分析器について解説したが、この分析器の特長は以下のとおりである。
(1) リアルタイムで1/1, 1/3オクタープ分析を行う。
(2) 時間信号をサンプル対サンプルで処理するので、自動車の通過騒音の非定常性分析を精度よく分析できる。
(3) 騒音計のJIS、IEC規格に準拠して、Fast、Slowなどの時定数での1/1, 1/3オクタープ分析を行える。
また、この分析器の主な応用例として、以下のもののが考えられる。
※ 非定常連続信号測定

* 音響インテンシティ測定
* 音響パワーティ測定
* 建築音響測定（残響室法音響分析、反射測定等）

したがって、ディジタルフィルタをベースとするリアルタイム分析器は、騒音分析の分野において、今後とも普及するものと考える。

参考文献