Members of the genus *Glaphyrostomum* Braun, 1901 (Trematoda: Brachylaimidae) are parasites of birds. However, an exception occurs in *Glaphyrostomum soricis* Asakawa, Kamiya and Ohbayashi, 1988, which was described from the long-clawed shrew, *Sorex unguiculatus* Dobson, 1890, in Hokkaido, Japan. A recent DNA barcode-based trematode survey of land snails clearly showed that *Ainohelix editha* (A. Adams, 1868), a bradybaenid snail indigenous to Hokkaido, serves as the first and second intermediate hosts for a species of the genus *Pseudoleucochloridium* Pojmańska, 1959 (Panopistidae). Its adult stage was furthermore confirmed from *S. unguiculatus*. A comparison of adult morphology between *Pseudoleucochloridium* sp. and *G. soricis* revealed that both should be considered the same species. However, *Pseudoleucochloridium soricis* comb. nov. cannot be applied because *P. soricis* (Sołtys, 1952) already exists as the type species of the genus. We, therefore, propose *Pseudoleucochloridium ainohelicis* nom. nov. as a replacement name for *G. soricis*.

Key Words: Trematoda, Panopistidae, *Pseudoleucochloridium*, new replacement name, Hokkaido.

Introduction

The class Digenea (Platyhelminthes: Trematoda) is a group of obligate parasites, which have a complex life cycle involving three hosts in typical species (Cribb et al. 2003). The digenean trematodes asexually reproduce mainly in molluscan first intermediate hosts, and the resulting cercariae metamorphose into metacercariae in second intermediate hosts. The metacercariae mature hermaphroditic adults in vertebrate definitive hosts. The discrimination of the larvae and adults from each of the hosts is essential in conducting taxonomic and ecological studies on digenean trematodes.

Several species of trematodes belonging to the closely related families Brachylaimidae Joyeux and Foley, 1930 and Panopistidae Yamaguti, 1958 are endemic to Japan. Members of these families are unique in using land snails as the first and second intermediate hosts (Pojmańska 2002a). Each of the parasites uses a particular species or group of snails as the first intermediate host, but a wide range of snail species are involved as the second intermediate host (Mas-Coma and Montoloiu 1986, 1995; Gracenea and González-Moreno 2002). Thus, the parasites play the different roles of a strict specialist and a generalist in their larval stages. The Japanese species of the two families have been infrequently recorded from shrews (Asakawa *et al.* 1988), shrew-moles (Yamaguti 1952; Kifune *et al.* 1992), rodents (Kamiya and Machida 1977), and birds (Yamaguti 1935, 1941), although their larval stages still remain undiscovered from land snails.

A recent DNA barcode-based trematode survey of land snails in Hokkaido, the northernmost island of Japan, led us to the description of two new species belonging to the genus Brachylaima Dujardin, 1843 (Nakao *et al.* 2017, 2018). During the continuing survey of land snails, we noticed that *Ainohelix editha* (A. Adams, 1868), an indigenous land snail in the island, serves as the first and second intermediate hosts for an unidentified species of *Pseudoleucochloridium* Pojmańska, 1959 (Panopistidae). A subsequent survey of small mammals succeeded in finding its adult stage from the long-clawed shrew, *Sorex unguiculatus* Dobson, 1890. However, this species has already been described as *Glaphyrostomum soricis* Asakawa, Kamiya, and Ohbayashi, 1988 (Brachylaimidae) from the same definitive host. A nomenclatural revision is needed to correct the taxonomic position of *G. soricis*. A new combination name, *Pseudoleucochloridium soricis* comb. nov., cannot be applied because the same name, *P. soricis* (Sołtys, 1952), already exists as the type species of the genus.

Accordingly, in this study we propose *P. ainohelicis* nom. nov. as a replacement name for *G. soricis*. The field survey
of this parasite enabled us to describe the larvae (sporocyst, cercaria, and metacercaria) from land snails and to redescribe the adult from shrews. The natural transmission of the parasite in Hokkaido was also considered based on the prevalence data of land snails, together with a discussion on the validity of both the species and the related families.

Materials and Methods

Field survey. During July and October in both 2017 and 2018, a field survey was carried out at three woody sites of Asahikawa, Hokkaido, namely Shunkodai (43.808°N, 142.355°E), Ubun (43.719°N, 142.351°E), and Tomisawa (43.746°N, 142.316°E). Land snails of Ainohelix editha, Ezo-helix gainsesi (Pilsbry, 1900), Discus pauper (Gould, 1859), and Succinea lauta Gould, 1859 were collected by hand picking from plant leaves and litter layers. Each snail was crushed between thick glass plates and then dissected in Dulbecco’s phosphate-buffered saline (PBS) under a stereo-microscope. The heart, kidney, and hepatopancreas were broken by fine-tipped forceps to detect metacercariae and sporocysts including cercariae. The number of metacercariae per infected snail was counted to measure the intensity of infection. After microscopic observation of the living larvae, the remainder were kept in 70% ethanol or 10% neutral-buffered formalin for later analyses. In the site of Shunkodai to be infected with the reticular infections (Table 1). We demonstrated only one snail of Aino-helix editha from Shunkodai to be infected with the reticular sporocyst of Pseudoleucochloridium ainohelicis nom. nov. Branches of the sporocyst containing cercariae occupied the hepatopancreas (Fig. 1). In contrast, the host range of the metacercaria included 4 snail species (A. editha, Ezo-helix gainsesi, Discus pauper, and Succinea lauta). All of the metacercariae detected were from the pericardial cavity. The metacercarial prevalence of A. editha was relatively high, ranging from 5.0 to 38.5%. The number of metacercariae per snail (the intensity of infection) was also high in the host snail of 28S rDNA and cox1 were prepared by MAFFT (Katoh and Standley 2013). The comparative sequences of related taxa were retrieved from DDBJ/ENA/GenBank databases. A phylogenetic tree of 28S rDNA was made by maximum likelihood (ML) method under the best-fit nucleotide substitution model GTR+I. The integrated software MEGA7 (Kumar et al. 2016) was used for the model selection and the tree construction. The robustness of the trees was tested by bootstrapping with 500 replicates. Inter- and intraspecific values of pairwise divergence between cox1 barcode sequences were computed by MEGA7 under p-distance model. The cox1 sequences of the related sympatric species, Brachylaima ezohelicis Nakao, Waki and Sasaki, 2017 (database accession nos. LC198311–6) and B. asakawai Nakao, Sasaki and Waki, 2018 (LC349002–11), were used for the comparison. A cox1 haplotype network was illustrated by TCS (Clement et al. 2000), and population genetics indices were computed by DnaSP (Rozas et al. 2017).

Results

Sampling. During the survey period from 2017 to 2018, 657 land snails were examined for the trematode infections (Table 1). We demonstrated only one snail of Aino-helix editha from Shunkodai to be infected with the reticular sporocyst of Pseudoleucochloridium ainohelicis nom. nov. Branches of the sporocyst containing cercariae occupied the hepatopancreas (Fig. 1). In contrast, the host range of the metacercaria included 4 snail species (A. editha, Ezo-helix gainsesi, Discus pauper, and Succinea lauta). All of the metacercariae detected were from the pericardial cavity. The metacercarial prevalence of A. editha was relatively high, ranging from 5.0 to 38.5%. The number of metacercariae per snail (the intensity of infection) was also high in A. editha, ranging from 1 to 16. Shrews were collected in October, 2018. Three individuals of Sorex unguiculatus (two from Shunkodai and one from Tomisawa) were available for the examination of parasites. No other species of shrews were collected. The adults of P. ainohelicis nom. nov. were de-
tected from all three shrews. The number of the adults per shrew was very few, ranging from 1 to 2. A total of 5 adults were obtained, but only two were gravid.

DNA barcoding. Twelve representatives of the larvae and adults from the three sites of Asahikawa (i.e., 1 sporocyst from A. editha, 9 metacercariae from all the snail species, and 2 adults from So. unguiculatus) were subjected to a distance-based DNA barcoding of mitochondrial cox1. All of the samples were identified as P. ainohelicis nom. nov. The mean of the intraspecific divergence was 0.003. The related species of Brachylaima ezoehelicis and B. asakawai are symmetrically distributed in the survey areas. When compared among the three species, the interspecific divergence were extremely high, ranging from 0.138 to 0.223. A parsimony network consisting of 6 cox1 haplotypes illustrated a slightly scattered pattern, showing the absence of a dominant haplotype (Fig. 1). The population genetics indices of the 12 cox1 sequences were as follows: haplotype diversity (0.818), nucleotide diversity (0.00362), Tajima’s D (−0.411), and Fu’s FS (−0.411). Both the network and the indices suggest that no bottleneck events occurred in the recent past.

Molecular phylogeny. A ML phylogenetic tree was constructed using the 28S rDNA data set including P. ainohelicis nom. nov. and members of related families. The results were as follows: haplotype diversity (0.818), nucleotide diversity (0.00362), Tajima’s D (−1.41807), and Fu’s FS (−0.411). The shaded circle represents the hypothetical ancestor. The number of metacercariae with standard deviation was computed among the infected snails.

shown because of the low sample size.

Family Panopistidae Yamaguti, 1958
Genus Pseudoleucochloridium Pojmania, 1959
Pseudoleucochloridium ainohelicis nom. nov.
[Japanese name: Ohguchi-mushi]
(Figs 3–6)

Sporocyst. Body tubular, with numerous reticular branches, grown throughout snail’s hepatopancreas (Fig. 3A). Number of branches per tube variable. Tubes distinctly thick, as compared with those of Brachylaima species (Mas-Coma and Montoliu 1986; Gracenea and González-Moreno 2002; Nakao et al. 2017), 186 (171–199) in diameter, including many cercariae (Fig. 3B). Movement of tubes sluggish. Emergence point of cercariae from tubes unclear.

Cercaria. Body prolate, slender in posterior portion,

Metacercaria. Body disk-like flattened, non-encysted, 1.4 (1.3–1.5) mm long by 0.9 (0.7–1.1) mm in maximum width (Fig. 4B). Suckers especially large for body size. Oral sucker smaller than ventral sucker (a width ratio of 1 to 1.2). Oral sucker round, 328 (261–393) long by 350 (288–437) wide, located on anterior end. Ventral sucker round, 412 (333–520) long by 423 (337–543) wide, positioned on center.

Fig. 2. A maximum-likelihood phylogenetic tree of the superfamily Brachylaimoidea inferred from 28S rDNA sequences. Three isolates of *Pseudoleucochloridium ainohelicis* nom. nov. and 11 isolates of 9 related species were included in the tree. The DNA database accession numbers are shown in the tree. *Clinostomum cutaneum* Paperna, 1964, a member of the family Clinostomidae Lühe, 1901, was used as an outgroup taxon (database accession no. GQ339114). Bootstrap percentages are shown on each node. Scale bar indicates the number of substitutions per nucleotide site.

Fig. 3. The sporocyst of *Pseudoleucochloridium ainohelicis* nom. nov. from *Ainohelix editha*. A) Branched tubes in the hepatopancreas (macrophotograph). Scale bar 2 mm; B) Branched tubes containing cercariae. Scale bar 200 µm.
Pseudoleucochloridium ainohelicis nom. nov. 163

Adult. Body oval, 1.4–1.5 mm long by 0.7–0.8 mm in maximum width (Fig. 5). Suckers especially large for body size. Oral sucker smaller than ventral sucker (a width ratio of 1 to 1.2). Oral sucker round, 334–366 long by 359–373 wide, located on anterior end. Ventral sucker round, close to intestinal bifurcation, 420–428 long by 427–439 wide, positioned on center of body. Prepharynx very short. Pharynx oblate-shaped, 92–95 long by 134–142 wide. Intestine bifurcated immediately at postpharyngeal position. Each cecum thick, undulating tubular, slightly ascending and then descending bilaterally to posterior extremity. Mature gonads located between posterior ceca. Anterior testis immediately posterior to ventral sucker. Both testes unlobed, nearly spherical, 97–98 long by 148–161 wide (anterior one), 126–143 long by 109–151 wide (posterior one). Ovary unlobed,

Fig. 4. The cercaria and metacercaria of *Pseudoleucochloridium ainohelicis* nom. nov. from *Ainohelix editha*. Both of the drawings are in ventral view. A) Cercaria. Scale bar 100 µm; B) Metacercaria. Scale bar 500 µm.

Fig. 5. The adult of *Pseudoleucochloridium ainohelicis* nom. nov. from *Sorex unguiculatus*. The drawing is in ventral view. The large suckers, M-shaped configuration of uterus, and terminally-positioned genital pore are characteristic of the genus. Scale bar 500 µm.
Minoru Nakao

Sakhalin, and the adjacent minor part of the Eurasian

During the revision (Pojmańska 1959), the former genus is

E. gainesi,

sitize the hepatopancreas and pericardial cavity, respectively.

A. editha, a land snail. The characters to discriminate the species. The specimens of

P. ainohelicis nom. nov. from Hokkaido are most similar to

P. skrjabini, also from the Pyrenees, but can be differentiated by having a larger ovary, a shorter vitellarium, and strongly undulating ceca. The intraspecific genetic diversity of

P. ainohelicis nom. nov. estimated by the sequences

Vouchers. The specimens of

P. ainohelicis nom. nov. used in this study have been deposited in Meguro Parasitological Museum, Tokyo under the collection numbers MPM21491 (1 adult) and MPM21492 (3 metacercariae). The holotype is also kept in the same museum (Asakawa et al. 1988).

Differential molecular markers. The parasite DNA sequences (28S rDNA and 6 haplotypes of cox1) are available for precise species identification. All of them have been deposited into DDBJ/ENA/GenBank databases under the accession numbers LC455740 (28S rDNA) and LC455741–6 (cox1).

Discussion

In this study,

Glaphyrostomum soricis from shrews in

Hokkaido has been renamed as

Pseudoleucochloridium ainohelicis

nom. nov. Both the genera

Glaphyrostomum and

Pseudoleucochloridium belong to the superfamili

Brachylaimoidea, whose members use land snails as intermediate hosts (Pojmańska 2002a). Members of the genus

Glaphyrostomum are parasites of birds (Pojmańska 2002b);

G. soricis from shrews is the only exception to this pattern (Asakawa et al. 1988). The genera

Glaphyrostomum and

Pseudoleucochloridium share common morphological characteristics, but can be differentiated by the configuration of uterus and the position of genital pore (Pojmańska 2002b, c). In the type specimen of

G. soricis, it was very difficult to locate the position of the genital pore, but the M-shaped configuration of the uterus was characteristic of

Pseudoleucochloridium (Pojmańska 2002c). The present study enabled us to confirm the terminally-positioned genital pore through observation of living materials from shrews, demonstrating that

G. soricis is a member of

Pseudoleucochloridium. The size of suckers and the distribution of vitellarium in the type specimen of

G. soricis are also consistent in identifying it as

P. ainohelicis nom. nov.

Before the erection of

Pseudoleucochloridium, the corresponding species were assigned to

Leucochloridium Carus, 1835 because of their morphological similarities. As a result of the revision (Pojmańska 1959), the former genus is properly used for the parasites of shrews and the latter genus for the parasites of birds. As far as we know, only five species of

Pseudoleucochloridium have been found from shrews in Eurasia. These are

P. ainohelicis nom. nov.,

P. pericardicum Mas-Coma and Montoliu, 1995,

P. rotundus Bychovskaya-Pavlovskaya and Kulakova, 1970,

P. skrjabini (Shaldybin, 1953), and

P. soricis. These species are morphologically quite similar to one another (Table 2). The sizes of oral and ventral suckers, the outline of cecum, the shape of testes and ovary, and the distribution of vitellarium are important characters to discriminate the species. The specimens of

P. ainohelicis nom. nov. from Hokkaido are most similar to those of

P. pericardicum from the Pyrenees, but can be differentiated by having a larger ovary, a shorter vitellarium, and strongly undulating ceca. The intraspecific genetic diversity of

P. ainohelicis nom. nov. estimated by the sequences

Fig. 6. The egg of

Pseudoleucochloridium ainohelicis

nom. nov. in the gravid adult. The left end is an operculum. An arrow indicates the notch of eggshell. A miracidium is visible inside. Scale bar 10 μm.

nearly spherical, 93–115 long by 160–176 wide, located between testes. Vitellarium follicular, extending bilaterally from middle to close to posterior extremity. Remnant posterior space occupied by twisting uterus, including numerous eggs. Configuration of uterus M-shaped (ascending from right side of ovary to right corner of cecum, then passing immediately beneath ventral sucker, again ascending to left corner of cecum, and finally descending to genital cavity). Genital cavity small, connecting metraterm and pitziform cirrus pouch, located near posterior end. Genital pore open to ventral surface. Excretory pore terminal.

Egg. Immature eggs continuously developed in uterus, reached maturity in metraterm. Mature egg light brown, slightly asymmetric, 32 (30–34) long by 17 (16–18) wide (Fig. 6). Small operculum present. Miracidium with long cilia visible inside.

Distribution. To date, the distribution of

P. ainohelicis

nom. nov. is restricted to Hokkaido. In this study, all the developmental stages were found in Asahikawa, an inland area of Hokkaido. The parasite had been recorded as

Hosts. The land snail indigenous to Hokkaido,

A. editha, serves as the first and second intermediate hosts for

P. ainohelicis

nom. nov. The sporocyst and metacercaria parasitize the hepatopancreas and pericardial cavity, respectively. Other land snails,

E. gainesi,

D. pauper, and

S. lauta, are involved as the second intermediate host. All of them are endemic species mainly in northern Japan. The long-clawed shrew,

S. unguiculatus, serves as the definitive host. The adult parasites the lower part of the intestine. The geographical distribution of the shrew is restricted to Hokkaido, Sakhalin, and the adjacent minor part of the Eurasian Continent (Hutterer 2005).

Etymology. The new specific name is given after the generic name of

A. editha, an essential intermediate host in Hokkaido.
of mitochondrial cox1 suggests that the parasite is originally indigenous to Hokkaido rather than being a recent immigrant. The endemism of the intermediate and definitive hosts in Hokkaido also supports the validity of *P. ainohelicis* nom. nov.

As shown in Table 2, land snails acting as the first intermediate host are proven only in *P. ainohelicis* nom. nov. and *P. pericardicum*. Although the sporocyst of *P. soricis* was found from Pyrenean snails (Jourdane 1976), the causative species was synonymized to *P. pericardicum* (Mas-Coma and Montoliu 1995). Snails of the second intermediate host are further confirmed in *P. ainohelicis* nom. nov., *P. pericardicum*, and *P. soricis*. It is likely that the disk-like flattened body and large suckers of the metacercaria are an adaptation to parasitize the pericardial cavity of snails. The intensity of the metacercarial infection is relatively low (i.e., mostly 1 to 3 metacercariae per snail in *P. ainohelicis* nom. nov.), perhaps due to the limited space of the pericardial cavity or the high mortality of severely infected individuals.

Most of the recognized species of *Pseudoleucochloridium* are from Europe, in accordance with the distribution of the Eurasian shrew, *Sorex araneus* Linnaeus, 1758. The discontinuous finding of *P. ainohelicis* nom. nov. in the Far East suggests that more congeners may be distributed widely in Eurasia, as a result of speciation events among trematodes, land snails, and shrews. In particular, a remarkable speciation occurs in land snails due to their low mobility and the resulting geographical isolation (Cook 2008; Rundell and Price 2009). The strict host specificity of land snails in developing the sporocyst might exert a selective pressure on the evolution of *Pseudoleucochloridium*.

The prevalence data of *P. ainohelicis* nom. nov. in land snails has important implications for considering the transmission dynamics in natural settings. In the present survey, a total of 144 snails of *Ainohelix editha* were examined (Table 1). The sporocyst was found from only one snail (0.7%), whereas 27 snails (18.8%) harbored the metacer-

caria. The hepatopancreas of the sporocyst-infected snail was displaced by the proliferating reticular branches (Fig. 3A). It is, therefore, likely that the sporocyst prevalence becomes lower due to a high mortality from the dysfunction of hepatopancreas. Another possibility is that land snails rarely ingest the parasite eggs from shrews. In any case, the sporocyst-infected snail serves as a superspreader for other snails. Land snails generally aggregate with other individuals of the same species (Hylander et al. 2005; Sólymos et al. 2009). Therefore, cercariae from a sporocyst-infected snail can probably be transmitted to normal snails in a certain space where the snails aggregate. The high prevalence of metacercarial infections is maintained as a result of the snail-to-snail transmission. In this study, the metacercaria was also found from *Ezohelix gainesi*, *Discus pauper*, and *Succinea lauta*, but their prevalence was relatively lower than that of *A. editha*. The snail-to-snail transmission also occurs in individuals of other snail species sharing a common microhabitat with *A. editha*.

All of the snails involved in the transmission of *P. ainohelicis* nom. nov. mainly inhabit the litter layer of woodlands. This soil surface seems to be a major environment in which snail-to-snail transmission occurs efficiently. Shrews living in the litter layer become infected when preying on the metacercaria-infected snails. According to a helminthological review of shrews in Hokkaido (Mitsuhashi et al. 2013), *G. soricis (=P. ainohelicis* nom. nov.) was found from *So. unguiculatus*, but not from *So. caecutiens* or *So. gracilimus*. This host preference is probably due to the food habit and/or the infection susceptibility of the shrews.

The present 285 rDNA-based phylogeny of the

Table 2. A comparison of *Pseudoleucochloridium* spp. found from shrews in Eurasia.

<table>
<thead>
<tr>
<th>Checkpointsa</th>
<th>P. ainohelicis nom. nov.</th>
<th>P. pericardicum</th>
<th>P. rotundus</th>
<th>P. skrjabini</th>
<th>P. soricis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Body (size)b</td>
<td>1.5×0.8 mm</td>
<td>1.0×0.7 mm</td>
<td>1.1×1.0 mm</td>
<td>1.2×0.6 mm</td>
<td>1.7×0.9 mm</td>
</tr>
<tr>
<td>2. Oral sucker (size)b</td>
<td>0.35×0.37 mm</td>
<td>0.30×0.27 mm</td>
<td>0.34×0.41 mm</td>
<td>0.27 mm</td>
<td>0.40 mm</td>
</tr>
<tr>
<td>3. Ventral sucker (size)b</td>
<td>0.42×0.43 mm</td>
<td>0.36×0.31 mm</td>
<td>0.47×0.45 mm</td>
<td>0.35 mm</td>
<td>0.38 mm</td>
</tr>
<tr>
<td>4. Ratio of suckersc</td>
<td>1:1.2</td>
<td>1:1.2</td>
<td>1:1.4</td>
<td>1:1.3</td>
<td>1:0.95</td>
</tr>
<tr>
<td>5. Outline of cecad</td>
<td>undulating</td>
<td>undulating</td>
<td>undulating</td>
<td>straight</td>
<td>straight</td>
</tr>
<tr>
<td>6. Shape of testesc</td>
<td>spherical</td>
<td>spherical</td>
<td>lobed</td>
<td>spherical</td>
<td>spherical</td>
</tr>
<tr>
<td>7. Shape of ovaryc</td>
<td>large, spherical</td>
<td>large, spherical</td>
<td>lobed</td>
<td>small, spherical</td>
<td>spherical</td>
</tr>
<tr>
<td>8. Upper limit of vitellarium</td>
<td>center</td>
<td>from center to one-third anterior</td>
<td>center</td>
<td>one-third anterior</td>
<td>center</td>
</tr>
<tr>
<td>9. Definitive host</td>
<td>Sorex unguiculatus</td>
<td>So. araneus</td>
<td>So. araneus</td>
<td>So. araneus</td>
<td>So. araneus</td>
</tr>
<tr>
<td>10. 1st intermediate host</td>
<td>Ainohelix editha</td>
<td>Cepaea hortensis</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>11. 2nd intermediate host</td>
<td>A. editha</td>
<td>C. hortensis</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>12. Distribution</td>
<td>Hokkaido</td>
<td>Pyrenees</td>
<td>Ukraine</td>
<td>Moldovia</td>
<td>Poland</td>
</tr>
</tbody>
</table>

a References cited are as follows: Mas-Coma and Montoliu 1995 (*P. pericardarcadium*); Bychovskaya-Pavlovskaya et al. 1970 (*P. rotundus*); Shaldybin 1953 (*P. skrjabini*); Sołtys 1952 (*P. soricis*); Pojmańska 1959 (*P. soricis*). b Median values were computed. c The width or diameter ratio of oral sucker to ventral sucker was computed.
Brachylaimoidea is still immature because of the lack of essential taxa. However, as already reported by another study (Valadão et al, 2018), our result suggests that the present morphology-based classification of the corresponding families is unnatural, particularly for members of the Brachylaimidae. A large-scale taxon sampling from land snails and vertebrates is required to revise the paraphyly of the Brachylaimoidea. Based on the resultant molecular phylogeny, the erection of new families and the rearrangement of existing genera will probably be necessary.

Acknowledgments

The present field survey at public parks of Shunkodai and Tomisawa was kindly permitted by the staffs of the municipal office of Asahikawa. The collection of small mammals was further accepted by the Hokkaido Government. We thank J. L. Anders for setting traps to collect shrews.

References

Soltys, A. 1952. The helminths of common shrew (Sorex araneus L.) of the National Park of Białowieża (Poland). Annales Universitatis Mariae Curie-Skłodowska, Sectio C 5: 165–209. [In Polish]

Pseudoleucochloridium ainohelicis nom. nov.

