Spinal Surgery
Online ISSN : 1880-9359
Print ISSN : 0914-6024
ISSN-L : 0914-6024
Review Articles
Attempts to Reorganize Locomotor Function Using Spinal Stimulation in individuals with Severe Spinal Cord Injury
Yaoki Nakao
Author information
JOURNAL FREE ACCESS

2016 Volume 30 Issue 1 Pages 83-87

Details
Abstract

  Most patients with significant spinal cord damage have permanent symptoms and may be wheelchair-bound, depending on their residual motor function below the spinal cord lesion. Spinal cord damage, whether caused by injury or disease, is currently not repaired by any therapy. The sensory, motor, and autonomic functions of each segment depend crucially on connections with supraspinal sites for all conscious or voluntary actions. Damage to these connections leaves spinal segments caudal to the lesion site partially or totally isolated from the brain, resulting in debilitating consequences. Studies in humans have demonstrated, however, that the lumbosacral spinal circuitry retains an intrinsic capability to oscillate and generate coordinated rhythmic motor activity even when isolated from brain control. Although the anatomical architecture of locomotor central pattern generators remains poorly understood in mammals, the functional phenomenon of central pattern generation has been documented extensively. Techniques to stimulate spinal networks lend themselves as potent tools to facilitate locomotor recovery after severe spinal cord injury. Among several experimental strategies tested for activation of locomotor circuits in mammals after complete spinal cord transection, electrical stimulation has been investigated in human spinal cord injury. A recent clinical study demonstrated that some patients with complete paralysis were able to perform voluntarily controlled movements with epidural stimulation. In combination with epidural electrical stimulation of lumbosacral segments, activity-based rehabilitation can restore supraspinally mediated movements. Electrical neuromodulation therapies that activate spinal cord central pattern generators open up new avenues for treatment of spinal cord injury in human subjects.

Content from these authors
© 2016 by The Japanese Society of Spinal Surgery
Previous article Next article
feedback
Top