プロジェクト品質マネジメントにおける統計手法の活用

片山清志* 長谷和彦*

Application of Statistical Method on Project Quality Management
Kiyoshi Katayama* Kazuhiko Hase*

プロジェクト品質マネジメントを成功に導く上で、プロジェクト品質マネジメントの果たす役割は大きい。これまでにも、SQC、TQC、TQMなどの呼称の下に、日本を中心とした品質マネジメント体系の整備が進められ、問題解決を行うための種々の手法が提案されてきた。これと同時に、これらの手法を問題解決の現場に適用するための支援ソフトウェアが開発されてきた。本報告では、これまでに支援ソフトウェアとして品質マネジメントの普及・発展に最も貢献してきたJUSE-QCASの機能を発展させたStatWorksの機能を概観するとともに、プロジェクト品質マネジメントにおける活用の可能性を提案する。

Key Words & Phrases: プロジェクトマネジメント, 品質管理, ソフトウェア, StatWorks, QS9000
Project Management, Quality Control, Software, StatWorks, QS9000

1．はじめに
TQMを高度化する上で、プロジェクト品質マネジメントは重要な要素であり、業務処理のための情報の共有化、作業の効率化、スピードアップ、コスト削減、顧客満足度向上する上で有効である。
本報告では、プロジェクト品質マネジメントを実施するための統計解析業務パッケージ「JUSE-StatWorks」を開発したので、その概要を述べるとともに、そのために組み込まれた新たな分析手法を提案する。

2．プロジェクト品質マネジメントにおける統計手法の活用
品質保証のツール群にはいくつかのタイプがある。大きく分けると管理のためのツールと改善のためのツールに分けられる。

前者においては、インプット、業務処理、アウトプットを定義し、業務範囲やビジネスモデルなどに特徴をもつ。ISO9000などの標準化に基づく品質保証においては、文書管理をはじめ品質要素ごとのワークフローをシステム化したパッケージが市販されている。また、統合型データベースを核にした各業務モジュールが構築されたE RPパッケージがある。その中で品質管理QMでは品質管理におけるビジネスモデルやワークフローを定義している。具体的には購買、在庫、製造、出荷、原価管理の各システムと、計画作成から日常検査業務、管理、各種分析までの一連の流れをセットにしてリアルタイムに処理できる。特徴としては情報を中核とする技術やシステムの利用が前提となっている。
一方、後者においては、品質を向上させる上で、ビジネスモデルに則った日常的な運用管理を効率化するだけでなく、問題の所在をすばやく取る上げ、測定、分析、改善、効果の確認、維持管理する管理のサイクルを回していくことが重要である。ここでは、問題解決あるいは業務改善のプロセスパッケージとアプローチ、各フェーズにおける処理内容を抽象化、分類しているが、統計的手法が的確に利用される仕組みが構築されている。
品質改善を有効に活用する上で、プロジェクト管理として、PDCAサイクルを有効に回すことが重要である。

一方で、問題解決手順として「Q Cス トリー」と言わなくなってきたが、問題の探索/定義から現状把握、原因の追及と調査、代替案の探索、評価、選択、対策の試行、効果の把握、標準化と歯止めなど、それぞれのステップに有効な統計手法が推奨されている。
一方、米自動車メーカの供給者品質保証マニュアル（QS9000）では、ISO9000の規格に上乗せする形で、各ステップにおける品質改善手法として、必要な統計手法や手順を詳細に規定し、推奨していることが特徴である。たとえば、S PCマニュアル
### 図表1 管理サイクルの各ステップにおける統計手法

<table>
<thead>
<tr>
<th>ステップ</th>
<th>要求項目</th>
<th>ツール・解析手法</th>
<th>StatWorks</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>M</strong></td>
<td>テーマの選択と現状把握、目標設定</td>
<td></td>
<td></td>
</tr>
<tr>
<td>フレーズトーニング</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>顧客満足度調査 (アンケート、インタビュー)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>チェックシート</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フローチャート、工程図</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ヒストグラム</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>散布図 (Scatter Plot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>パレート図 (Pareto Chart)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>管理図 (Control Chart)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>コンポジットマップ (C.H.M)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPUやFMEA評価</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gage R&amp;R (Method, Xbar-K, ANOVA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>A</strong></td>
<td>要因の解析</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*要因と特性の関係：リストアップ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*過去の状況や現状調査</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*要因別</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*時間的変化：能力検証</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*要因間の相互関係</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>工程特性分析 (CP, Cpk, Pp, Ppk, O.J)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>管理図、ヒストグラム、確率紙</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>特性要因図</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>フレーズトーニング</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>適合検定 (t-test)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F検定 (F-test)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>クロス表やカイ2乗検定</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>回帰分析 (Regression Analysis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>相関分析 (Correlation Analysis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>群別ヒストグラム</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>散布図 (Scatter Plot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バレート図 (Pareto Chart)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>多変量解析 (多変数解析、AID等)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>I</strong></td>
<td>要因選択と最適化</td>
<td></td>
<td></td>
</tr>
<tr>
<td>改善</td>
<td>たくさんの候補から本当に効果が高く要因</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Vital Few Vs)を見出し、最適を選択する。</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>カイ2乗検定 (Chi Square test)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>分散分析 (ANOVA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実験計画法、直交表</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>多変量解析 (主成分分析や重回帰分析等)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実験計画法 (完全実施)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>回帰分析 (Regression Analysis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バラメータ設定 (田口式ソッド)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>開発中</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>信頼性解析 (信頼性解析)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>各種最適化手法</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>C</strong></td>
<td>効果の確認と管理の定着化</td>
<td></td>
<td></td>
</tr>
<tr>
<td>管理</td>
<td>測定システムの信頼性確認</td>
<td></td>
<td></td>
</tr>
<tr>
<td>yやxがコントロール可能か検証</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>改善したシステムの定着を図る</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gage R&amp;R (Short Method, Xbar-K, ANOVA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>管理図 (Control Chart)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バレート図 (Pareto Chart)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>適合性 (ドキュメント化)、ホカヨケ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>コンポジットマップ (C.H.M) で確認</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Q S 9000における部門固有の要求事項

<table>
<thead>
<tr>
<th>要求項目</th>
<th>手法</th>
</tr>
</thead>
<tbody>
<tr>
<td>量産化品承認手続き（一般）</td>
<td>量産品承認手続き (P.A.P) マニュアル</td>
</tr>
<tr>
<td>繰り返し改善</td>
<td>計画値及び計数値の計画</td>
</tr>
<tr>
<td>品質及び生産性の改善</td>
<td>100%未満の初期生産能力</td>
</tr>
<tr>
<td>測定システムの信頼性</td>
<td>疑似なバランス</td>
</tr>
<tr>
<td>繰り返し改善手法</td>
<td>工程能力指数 (Cp, Cpk)</td>
</tr>
<tr>
<td>管理図 (計画値、計数値)</td>
<td>条積和 (CUSUM)</td>
</tr>
<tr>
<td>実験計画法 (DOE)</td>
<td>工程の進歩的運営 (EVP)</td>
</tr>
<tr>
<td>品質コスト管理</td>
<td>100万円の1 (P.P.M) 分析</td>
</tr>
<tr>
<td>部材分析</td>
<td>問題解決手法</td>
</tr>
<tr>
<td>トレーニング</td>
<td>テーマーキャンプ</td>
</tr>
<tr>
<td>動作分析/人間工学</td>
<td>ホカヨケ</td>
</tr>
<tr>
<td>製造能力</td>
<td>設備及工程の計画並びに有効性</td>
</tr>
<tr>
<td>総合縦断計画</td>
<td></td>
</tr>
</tbody>
</table>
ルにおいては、管理図と工能能力（性能）指数を組み合わせ利用することにより、群間変動をなくせばどの程度まで工能能力が向上するかの改善の指針が得られるようになっている。また、経営革新、意識改革のための方法論として、シックスシグマ活動が盛んであるが、統計教育の重視、データに基づいた管理改善が特徴で、測定、分析、改善、管理のための管理サイクル、いわゆる「MAIC」を回すことが体系化されている。ここでも、統計手法の活用は必須ツールとなっている。（図表1）

3. JUSE-StatWorksの概要と活用機能
　Statworksには、プロジェクト品質マネジメントを行うための機能としてODBICOBIO機能、定型処理、インタネット・フィー（HTML出力）などがあるが、ここでは主に、統計的手段の活用について述べる。統計的手法は、基本処理のほかQC七つ道具、実験計画法や、多変量解析、信頼性解析などが含まれており、品質管理を行うための手法が網羅されている。（図表2）Q S9000やシックスシグマで使えることも関連した手法で行っている。各統計手法は、思考やデータ解析の流れを意識したストーリ性を重視した機能配置、オプション設定機能を有している。定型処理の登録と実行機能は、手法間にまだあるデータ解析や業務処理の流れを自動的に実現することができる。特に、QS9000やシックスシグマ活動を支援するための手法として、継続的工能改善手法としての性能評価評価、累積管理図（CUSUM）や測定システムの精度管理手法としててゲージR & R、故障モード分析ツールFMEAテクノロジーのほか、大量データの品質状態を視覚的に管理するサンプル・シーケンス（CHM）、主成分分析や重回帰分析、多段階別分析など各種変量解析手法が網羅されている。最近では品質特性原因の追及手段として重回帰分析を利用した事例も出ている。なかでも量的的データが混在した場合の項目および項目間の関係の一覧し、要因解析のためのデータ構造をビジュアル化できる多変量分析や変量解析の変数選択機能などは品質状態をビジュアルに把握するために好評である（図表3）

4. まとめ
　Statworksはプロジェクト品質マネジメントのためのツールとして有用であり、品質運用管理および品質改善を行う上での統計手法が組み込まれている。特に、QS9000やシックスシグマ活動で要求される統計手法をリスト化するとともに、それを実現するためのシステムやビジュアルな画面レイアウトを提案した。今後、全社の品質管理TQMあるいは経営革新活動、品質情報システムツールとして事例を報告していきたい。

参考文献
1. 隈近雅彦ほか、SQC入門、日科技連出版社、1992
2. QS9000、第3版、ReferenceManual各種
3. 青木保彦ら、シックスシグマ導入戦略、ダイアモンド社、1998

図表2 StatWorksの概要

参考文献
パレート図（重点項目の抽出、比較）

多変量連関図（品質特性と項目間関係）

工程性能分析（工程能力と規格値）

コンポーネントアワーマップ（市場クリ－ムデータの傾向把握と分析に）

ゲージ R&R（測定システムの精度管理に）

主成分分析（主成分スコアの層別）

図表3 StatWorksによる出力例