A Proposal for Evaluation Methods for Human Skill Based on Log Analysis of Role-Play Exercise

Tatsuya Noguchi* Masahiro Ishikawa** Kazuki Takatori* Erika Taguchi* Taku Teduka**
Daisuke Hirose** Hiroshi Maruyama* Akio Takashima** Taichi Nakamura**

Role-play training as group work is effective in acquiring and improving human management skills in project management education. We have developed a web-based role-play training system for project management education named PROMASTER (Project Management Skills Training Environment) in order to provide the profile based education (PBE). In providing PBE, the teaching staffs have to consider students' motivation of learning project management skills, their character, and their acquired skill level. We defined the behavior logs which may be required for evaluating students' human skills such as communication skill, negotiation skill, and readership skill. This paper describes a method for evaluating human skills from the behavior logs which include time line of the events and chat messages recorded by the role-play training system.

Key Words & Phrases: プロジェクトマネジメント教育, ロールプレイ演習, ヒューマン系スキル, 行動履歴

Project Management Education, Role-Play training, Human management skill, Behavior Log

1. はじめに

情報産業界は、優秀なプロジェクトマネージャーの早期育成のため、プロジェクトマネジメント教育を大学に期待している。東京工科大学コンピュータサイエンス部（以下、本学）では、座学による知識習得を中心とする教育と現場で使われるスキルを向上させる実務教育とのギャップを埋めるため、ロールプレイ演習（以下、RP演習）を取り組んでいる[1]。RP演習は、学習分野・内容のコントロールと演習時間の調整が容易であり、反復して学習することで、大学など教育機関の実態、実務経験やOJT（On the Job Training）が困難な環境でも、講義で学習したPM知識の定着とグループワークによるヒューマン系スキルの修得・向上が可能である。RP演習は、OJTと比較した場合次の利点がある。

(1) OJTよりもはるかに多くのプロジェクトを疑似体験できる
(2) 現実には経験できないほどの極めて高リスクで困難な案件を疑似体験できる
(3) OJTでは人間関係が損なわれるような経験でのヒューマン系スキルの疑似体験ができる

RP演習では、座学で得た知識をスキルとして定着させることに加え、ヒューマン系スキルの習得期待できる。プロジェクトマネジメント（以下、PM）のスキルの習得は、学習者個々人のPM学習の動機の強さ、意欲、性格、習得した知識のレベルに関係することが大きい。そのため、学習者個人の学習曲線を考慮したPBE（Profile Based Education）に基づく指導が求められている[3][4]。
PBEの実現に、RP演習中の学習者のPM活動を観察し、学習者がPM知識を凝縮されたレベルのスキルとして使えることを評価する必要がある。

PM手法の技術系スキル、例えばEVM(Ed
Value Management)のSPI (Schedule Performance Index)を求める計算問題は、計算結果を採点することで学習者が保有するスキルを定量的に測定可能である。一方で、ヒューマンスキースキルの評価は、学習者による自己評価、学習者のPM活動の過程を、学習者自身に記録してもらうか、教員が観察して把握する必要がある[2][3]。しかし、30人以上の学生のRP演習中の様々な作業を一人の教員と数名のTA (Teaching Assistant)が、逐一計測することは困難である。学習者自身が記録することも、学習プロセスを支断するため現実的ではない。

本稿では、PBEを実現するために、(1)学習者の行動履歴を全て捕捉可能な教育環境を提供するオンライングループワークシステムPROMASTER (Project Management Skills Training Environment)を構築し、(2)PROMASTERが記録した学習者の行動履歴から学習者が保有するヒューマンスキースキルの評価手法を提案する[4]。

2. RP演習実施の流れ

RP演習を行うにあたり、仮想の情報システム開発プロジェクトを設定し、開発工程で起きる様々な問題とそれを解決するために学習者に求める課題を設定する。これらの設定内容をRPシナリオ(以下、シナリオ)と呼ぶ。

3. RP学習環境の構築

3.1 PROMASTERの要件

RP演習を実施し学習者の行動履歴を捕捉する、オンライングループワーク演習システムPROMASTERの最も基本的な3つの要件を以下に示す。

(1) RPを実行する

RP演習を実施し、学習者間の情報交換の手段を提供する。

(2) PM学習効果を向上する

PM/BOKで整理された知識領域とプロセスを網羅したシナリオを用いたRP演習とEVM、WBS (Work Breakdown Structure)、ガントチャートといったプロジェクト管理手法を経験できる仕組みを提供する。

(3) PBEを実現する

学習者のPM活動と学習者同士の議論を記録・分析し、演習の難易度調整や学習者へのフィードバックに利用する。

PROMASTERの要件の特性要因図を図2に示す。

図1 RP演習の流れ

図1にRP演習の流れを示す。シナリオ中の演習課題に、学習者に提示される1つまたは1つの情報を情報カードという。学習者は、情報カードに記載された利点と課題に基づき、学習者同士で情報共有や意見交換し、意思決定と合意形成しながらRP演習を進める。

図2 PROMASTERの要件の特性要因図

図3 PROMASTERが提供するサービス

476 プロジェクトマネジメント学会2011年度春季研究発表大会予稿集
図3にロールプレイ演習システム群が提供するサービスを示す。

3.2 学習者の行動記録

PBE実現のために、学習者がPR演習中に、演習課題に取り組むために行った動作をデータベースにログとして保存する。表1に、PROMASTERがRP演習中の学習者の行動を記録するログの形式を、表2に記録する学習者の行動の種類を、表3にRP演習中の学習者同士の議論内容を記録するログの形式を示す。

<table>
<thead>
<tr>
<th>表1 学習者の行動ログ</th>
</tr>
</thead>
<tbody>
<tr>
<td>執行内容</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表2 学習者がRP演習中に行う動作の種類</th>
</tr>
</thead>
<tbody>
<tr>
<td>執行内容</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表3 学習者同士の会話ログ</th>
</tr>
</thead>
<tbody>
<tr>
<td>執行内容</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

3.3 PROMASTERによる演習の結果

PROMASTERを使用したRP演習を本学3年次の講義で3度実施した。RP演習の結果を表4に示す。

<table>
<thead>
<tr>
<th>表4 RP演習の行動ログと会話ログ</th>
</tr>
</thead>
<tbody>
<tr>
<td>時間</td>
</tr>
<tr>
<td>11:28:50</td>
</tr>
<tr>
<td>11:28:50</td>
</tr>
<tr>
<td>11:28:50</td>
</tr>
<tr>
<td>11:31:35</td>
</tr>
<tr>
<td>11:31:35</td>
</tr>
<tr>
<td>11:32:06</td>
</tr>
<tr>
<td>11:33:36</td>
</tr>
<tr>
<td>11:33:36</td>
</tr>
<tr>
<td>11:34:20</td>
</tr>
<tr>
<td>11:35:05</td>
</tr>
<tr>
<td>11:36:02</td>
</tr>
<tr>
<td>11:36:10</td>
</tr>
<tr>
<td>11:36:24</td>
</tr>
<tr>
<td>11:37:11</td>
</tr>
</tbody>
</table>

4 ヒューマン系スキルの評価

4.1 スキルの分析手法

ヒューマン系スキルを評価するため、学習者の会話内容を分析するには多大な時間を要する。これは既存の意味を理解し、文脈から前後のつながりを把握し、言葉が発言された経緯を理解する必要があるためである。そのため、RP演習の終了後、
学習者に対して即時に演習結果をフィードバックできない。

学習者の行動には、「よく利害について話す学習者は、利害について記述された情報カードを“何度”も読み返す」、「チャットであまり発言しない学習者はコミュニケーションスキルが低い」といった数値に関連する行動の法則があると考える。そこで、我々は、PROMASTERが記録したログの、ログが記録された日時、チャットにおける学習者の発言回数、各情報カードを読んだ回数などの数値データからスキルを評価する。

学習者がスキルを保有するということは、スキルを活用して行動ができるである。「○○ができた」から、スキルAはスキルレベル2である」という形に、スキルと学習者の行動を対応させ、行動の内容によってスキルレベルを設定する。これがスキルの評価基準となる。

設定した評価基準に基づいて、会話ログの内容を読んで、各学習者のスキルレベルを求める。そして、数値データからスキルレベルの同じ学習者に、共通して現れる行動のパターンを抽出する。この行動パターンを抽出することで、会話ログの内容を読まなくても、学習者のスキルレベルが評価可能になると考える。

4.2 計測する行動の設定

ヒューマン系スキルとして一般的な、コミュニケーション、ネゴシエーション、リーダーシップの3つのスキルを評価する。各スキルに対して行動を設定するため、PMIが発行する「プロジェクトマネージャーのコンピテンシー開発体系」に記述されたプロジェクトマネージャーの求められるコンピテンシーを基に、RP演習における学習者のコンピテンシーを設定した。プロジェクトマネージャーの実践的な知識や、メンターやのステークホルダーの実施の必要があり、学習者である大学生には求めない。同様の理由で、大学生に求めないコンピテンシーを省いた。また、学習者が取組むRP演習シナリオによって、学習者がスキルの発揮を求められないことがある。本研究では、我々が実施している既存のRP演習シナリオから学習者の有するコンピテンシーを設定するため、設定されたRP演習における学習者コンピテンシーを、すべてのシナリオから評価できるコンピテンシーに限定した。評価できるスキルごとに、コンピテンシーから抽出した行動をコミュニケーションスキル、ネゴシエーションスキル、リーダーシップスキル、リーダーシップスキル、類似項目をまとめた。各スキルと対応する行動を表5から7に示す。

表5 コミュニケーションに応答する行動

<table>
<thead>
<tr>
<th>事由</th>
<th>まとめ</th>
<th>コミュニケーションに応答する行動</th>
</tr>
</thead>
</table>
| 1 | | プロジェクトの状況を考える。適切な行動を行う。
| 2 | | 情報を伝える。
| 3 | | プロジェクトの状況を理解し、適切に応答する。
| 4 | | プロジェクトの状況を理解し、適切に応答する。
| 5 | | プロジェクトの状況を理解し、適切に応答する。
| 6 | | プロジェクトの状況を理解し、適切に応答する。
| 7 | | プロジェクトの状況を理解し、適切に応答する。
| 8 | | プロジェクトの状況を理解し、適切に応答する。
| 9 | | プロジェクトの状況を理解し、適切に応答する。
| 10 | | プロジェクトの状況を理解し、適切に応答する。
| 11 | | プロジェクトの状況を理解し、適切に応答する。
| 12 | | プロジェクトの状況を理解し、適切に応答する。

表6 ネゴシエーションに応答する行動

<table>
<thead>
<tr>
<th>事由</th>
<th>まとめ</th>
<th>コミュニケーションに応答する行動</th>
</tr>
</thead>
</table>
| 1 | | プロジェクトの状況を考える。適切な行動を行う。
| 2 | | 情報を伝える。
| 3 | | プロジェクトの状況を理解し、適切に応答する。
| 4 | | プロジェクトの状況を理解し、適切に応答する。
| 5 | | プロジェクトの状況を理解し、適切に応答する。
| 6 | | プロジェクトの状況を理解し、適切に応答する。
| 7 | | プロジェクトの状況を理解し、適切に応答する。
| 8 | | プロジェクトの状況を理解し、適切に応答する。
| 9 | | プロジェクトの状況を理解し、適切に応答する。
| 10 | | プロジェクトの状況を理解し、適切に応答する。
| 11 | | プロジェクトの状況を理解し、適切に応答する。
| 12 | | プロジェクトの状況を理解し、適切に応答する。
4.3 スキルの評価スコアと基準の設定

本研究では、4.2で設定したスコアごとのRP演習における学習者のコンピテンシーを数値化した基準にまとめ、各スキルに関して2〜3つの行動を計測対象とする。これらの行動に対して、スキルレベルを4段階で、設定したスキルレベルと評価基準を図8から図10に示す。

表8 コミュニケーションスキルの評価基準

<table>
<thead>
<tr>
<th>スキル</th>
<th>評価基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>会話と相手の意見をうまく理解し、相手に合う適切な対話を示す</td>
</tr>
<tr>
<td>3</td>
<td>相手の意向を理解し、相手の提案に対し適切に対応する</td>
</tr>
<tr>
<td>2</td>
<td>相手の意向を理解し、適切に対応する</td>
</tr>
<tr>
<td>1</td>
<td>相手の意図を理解していない。相手の提案に対して反応がない。</td>
</tr>
</tbody>
</table>

表9 ネゴシエーションスキルの評価基準

<table>
<thead>
<tr>
<th>スキル</th>
<th>評価基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>自分の立場を理解しながら、相手の立場を理解し、相手の提案を適切に対応する</td>
</tr>
<tr>
<td>3</td>
<td>自分の立場を理解しながら、相手の提案を適切に対応する。</td>
</tr>
<tr>
<td>2</td>
<td>自分の立場を理解をして、相手の提案を適切に対応する。</td>
</tr>
<tr>
<td>1</td>
<td>自分の立場を理解していない。相手の提案に対して反応がない。</td>
</tr>
</tbody>
</table>

5. 評価

スキルを保有する学習者に共通に表れる、スキルレベルと学習者の行動を集計した数値データの組み合わせをパタークとして抽出できるか、評価する。

本学3年次のプロジェクト経営手法の講義でRP演習を実施した。参加者は30名である。使用したRPシナリオは、ウェルネスマスコンという会員制のスポーツ経営を運営する会社の顧客管理システムの構築を対象にした仮想プロジェクトで展開する問題を演習者が解決するものである。その中で、設計が遅れ開発方針を見直す状況でのプロジェクトの意思決定を行うシナリオのログを使用して評価する。

ヒーマン系スキルレベルとそれを持つ学習者の行動パターンの関係を抽出するため、ロジクから集計した学習者の行動を表11に示す。設定した評価基準を基に行動ログと会話ログの内容から、各学習者のスキルレベルを評価する。

各ヒーマン系スキルに対して2〜3つの評価したスキルレベルとその合計、全体で9個のヒーマン系スキルレベルと、表11に示した24個の集計した学習者の行動から、相関と生データの分析によって、パターンを抽出する。

表11 集計した学習者の行動一覧

<table>
<thead>
<tr>
<th>ロールプレイ</th>
<th>RP演習</th>
<th>項目</th>
<th>シナリオ</th>
<th>チャンス</th>
<th>ダンプ</th>
<th>リーダーシップ</th>
<th>チームビルディング</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 倍の行動</td>
<td>100%</td>
<td>1</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>2 倍の行動</td>
<td>100%</td>
<td>1</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>3 倍の行動</td>
<td>100%</td>
<td>1</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>4 倍の行動</td>
<td>100%</td>
<td>1</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

6. 結果と考察

相関係数の最大値は、コミュニケーションでは、「正確な情報を、他の学習者にわかりやすく伝えられる」＋「他の学習者の意見に傾聴し、相手と内容にあった反応を示す」の2つのスキルレベルの合計と「Agent以外の学習者（自分を含む）が発言してから自分が発言するまでの平均時間」の0.53、ネゴシエーションでは、「プロジェクトの問題点や課題、スコープや自組織の利害を理解する」のスキルレベルと「演習課題の開始から終了までの時間に占める時間」の0.49、リーダーシップは、「リーダとしての権限の行使」のスキルレベルと「演習課題の開始から終了までの時間に占める時間」の0.49を示した。
The Society of Project Management

表12 2つのシナリオの相関の比較

<table>
<thead>
<tr>
<th>項目</th>
<th>行動の集計内容</th>
<th>方針変更</th>
<th>方針通り</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>チャットによる発言回数</td>
<td>-0.72</td>
<td>0.17</td>
</tr>
<tr>
<td>2</td>
<td>演習課題の開始から終了までの時間に占める、チャットによる発言回数の2つの行動の相関が0.7を超える値となった。</td>
<td>0.72</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

相関係数の比較を表12に示す。方針変更シナリオと計画通りシナリオでは、相関係数の値が大きい正負の関係である。この2つ以外のスキルレベルと集計した行動の相関係数を比べたところ、相関係数が2を超えるもので、近い相関係数が近いものではなく、正負の関係になっているものも多い見られ、パターンは見つからなかった。

相関以外に、スキルレベルと学習者の行動の集計から傾向の導出を試みた結果を以下に述べる。ネゴシエーションスキルの「お互いの利害を調整しながら、合意を形成する」のスキルレベルが低い学習者のほとんどは、「自分以外の学習者が発言してからの自分が発言するまでの平均時間」が短いということがわかった。計画通りシナリオを調査したところ、方針変更でも同じ傾向が見られた。しかし、ごく一部のスキルレベルが高い学習者もこの平均時間が短い人がいた。

以上から、スキルレベルと数値から見えられる学習者の行動の間に相関関係はなく、パターンは抽出できなかった。しかし、特定のスキルレベルを持つ学習者に共通の行動傾向を抽出することが、スキルを評価できる可能性がある。

7. おわりに

本論文では、PBE実現のため、学習者のスキルを計測可能な環境の整備と、そこからスキルを評価に取り組んだ。学習者のRP演習中のPM活動と学習者間の議論を記録可能となったが、ヒューマン系スキルの学習者の行動と議論のログの数値データからの学習者の行動パターンの抽出は、できなかった。

今後の課題として、特定のスキルレベルを持つ学習者に共通の行動傾向からスキルを評価できる調査のため、スキルレベルの学習者に共通して現れる傾向を数抽出する必要がある。また、学習者がスキルを発揮するか、シナリオ内容に依存する。学習者のスキルを評価するためのRP演習シナリオの作成方法を検討する必要がある。

謝辞

本研究は、文部科学省の平成19年度私立大学学術研究推進事業オプン・リサーチセンターのシナリオ・ソフトウェア教育の研究の助成による。

参考文献

