オリフィス付きダウンカマーを装着した
噴流層の安定操作条件

Stable Operation Condition for a Spouted Bed
Equipped with a Moving Bed Downcomer with an Orifice

永島 大*, 石藏 利文
Hiroshi Nagashima, Toshifumi Ishikura

Received 11 October 2013; Accepted 13 February 2014

The smooth transfer of solids from upper stage to lower stage through a downcomer is important for a stable operation of multi-stage spouted beds. Behavior of gas and solids in a moving bed downcomer, which is fitted with an orifice at the bottom, under negative pressure gradient has been investigated experimentally for a spouted bed operation, using Geldart D particles as bed materials. For this study, a downcomer has been installed in a one-stage spouted bed.

As the results, the limits of operating conditions for a stable operation of a spouted bed with a downcomer were determined experimentally. The limits were influenced by the pressure drop across the spouted bed at the minimum spouting, length of the downcomer and the pressure gradient of the moving bed in the downcomer. Also, the range of the operating conditions for stable operation was extended with decreasing the bed depth of the spouted bed. In addition, based on experimental observation, the moving bed flow pattern changed from stable flow to intermittent flow as the gas pressure gradient in a moving bed downcomer increased and the fact could be explained by the solids discharge model which expresses the gas and the particles flow in the vicinity of the orifice.

Keywords: Moving bed, Downcomer, Negative pressure gradient, Solids flow pattern, Spouted bed

1. 緒 言

噴流層は、粒子群を規則正しく循環させて流動化させることができるため、流動層ではスラッキングが生じ易いGeldartのD粒子に与える粗い粒子に適した固気接触装置である。本装置は、小麦の乾燥装置として開発されたが、その装置特性を生かして近年、乾燥、造粒・コーティング、バイオマスのガス化・熱分解などの様々な物理的、化学的操作に応用されている。その際、噴流層が連続的に操作される場合にはスケールアップの方法として段階化が挙げられる。

多段噴流層は、単段の噴流層を縦方向に積み重ね、直列に配列したものである。本装置ではガスが装置内部を上向きに流れ、原料粒子が塔頂部から供給され、上段から下段へ各段で噴流化しながら逐次下降し、最終的に装置底部から排出し、製品粒子として回収される。粒子保有量が同一であれば、多段化により各段の噴流層の層高が低くなるため、最小喷流化速度や圧力損失の減少および粒子滞留時間の均一化などの利点が得られる。

多段噴流層の段間の粒子輸送にはダウンカマー（連結管）が用いられることが多い。ダウンカマーは、蓄圧下における粒子輸送の手段の一つで、低圧の
上部から高圧の底部へ管内の粒子群のシール作用によ
て圧力差を保ったまま粒子を下方へ輸送する。したがっ
て多段噴流層の系全体を安定操作するためには各段間
のダウンケーマー内の粒子群の流れがスムーズな移動層
状態であることが最も重要となる。

ダウンケーマーの底部には粒子群の流量を調節するた
め、オリフィス、バルブあるいはLバルブなどが
一般的に装着されている。本報告ではオリフィスを用
いているため、結局多段噴流層の設計・操作は、背圧
下におけるオリフィス付きダウンケーマーからの粒子群
の排出という問題に帰着する。背圧下におけるオリフィ
ス付きスタンドバイの流動特性
に関しては、管
全体が粒子群で満たされた移動層状態で実験され、観
察に基づいてその流動パターンなどの検討がなされて
いる。さらにオリフィス近傍のガスと粒子の挙動が安
定操作に影響を与えることが示され、安定操作の条件
と限界を説明する粒子排出モデルが提案されている。
筆者らは多段噴流層への応用を念頭において、こ
の報告とは異なり、管内に形成される移動層の層高
が操作条件によって変化するダウンケーマーを用いて同
様の検討を行った。なお、この実験では多段噴流層の
段間の圧力差が相当する背圧を絞り弁を調節すること
で実現させてダウンケーマー内に形成される移動層の流
動特性を調べている。

本報告では、前報
で得られた知見を踏まえ、オリ
フィス付きダウンケーマーを実際に噴流層に取り付けた
場合の安定操作条件に関する実験を行った。試料粒子
としてGeldartのD粒子
に適した相待砂がガラスビー
ズを用い、流動状態を観察し、背圧下での安定操作が
可能なガス速度、圧力損失、粒子供給速度などの操作
条件の範囲を噴流層の層高を変化させて調べた。その
際、前述のオリフィス近傍のガスと粒子の挙動に基づ
いた粒子排出モデルを本実験にも適用して、各試
料粒子の安定操作が可能な限界点を求め、実験値と比
較した。さらにダウンケーマー内のスムーズな移動層流
れにおけるガス速度と粒子速度の関係を詳細に検討し
た。

2. 実験装置および条件

ダウンケーマーを噴流層に組み込んだ実験装置の概略
をFig. 1に、実験条件を第1表に示す。オリフィ
ス付きダウンケーマー①を塔径Dr=100 mm、ガス入口
ノズル径③Dr=12 mmの噴流層③に装着して、噴流
化実験を行った。ダウンケーマー内径Ds=20 mm、
長さLs=500 mmのアクリル管で底部オリフィス②

Table 1 Experimental conditions

<table>
<thead>
<tr>
<th>item</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>downcomer inside diameter</td>
<td>Ds [mm]</td>
</tr>
<tr>
<td>length</td>
<td>La [mm]</td>
</tr>
<tr>
<td>orifice diameter</td>
<td>Do [mm]</td>
</tr>
<tr>
<td>spouted bed column diameter</td>
<td>Ds [mm]</td>
</tr>
<tr>
<td>diameter of gas inlet</td>
<td>Dg [mm]</td>
</tr>
<tr>
<td>bed depth</td>
<td>H [mm]</td>
</tr>
<tr>
<td>mass flow rate of solids</td>
<td>F [kg/s]</td>
</tr>
</tbody>
</table>

（オリフィス径Ds=7 mm）を取り付けられている。装
置に供給されるガスは室内的空気で、プローラーから
サージタンク、四分円ノズル流量計⑧、ガス流量調節
バルブ⑦を経て装置内に送り込まれる。実験では、ま
ず粒子群がホッパー⑤から、粒子供給用オリフィスを
通して自然排出状態で噴流層に供給される。つぎにバ
ルブ⑦で層内のガス速度Uを調整して、噴流層およ
びダウンカーマー内の圧力損失 \(\Delta P \) を計測する。\(\Delta P \) は、圧力変換器（半導体圧力センサ）に接続し、その出力は A/D 変換器を介して PC に集積される。噴流層内の粒子群は、ダウンカーマー（粒子入口部）よりダウンカーマー管内に溢流し、図中に示すように管内で層高 \(L \) の流動層が形成される。安定状態では、ダウンカーマーからの粒子排出速度 \(F \) が上部ノッパーからの粒子供給速度と等しくなり、ダウンカーマー内の流動層の高さ \(L \) が一定となる。\(F \) は、実験装置表面の粒子捕集ピンで所定時間に回収される粒子質量で求められた。また図中の \(H \) は喷流層底部からダウンカーマー上端（粒子入口部）までを長さとして、安定状態では喷流層の層高に等しい。\(H \) は50, 100 および 150mm に設定した。実験では、まず粒子供給速度を設定して、ガス速度 \(U \) を最小噴流化速度付近から徐々に増加させて、ダウンカーマー付け噴流層の系全体が安定操作可能な操作条件の範囲を調べた。

実験に用いた粒子は、通常の喷流層で処理されるD粒子に相当するやや角張った相馬砂と球形に近いガラスピーズで、各試料粒子の主な特性を Table 2 に示す。粒子径 \(D_{50} \) は空気通過法で求めた表面直径相当径、粒子密度 \(\rho_p \) はビクノメータ法による実験値である。また表中の空隙率 \(\varepsilon \) は、前報でダウンカーマーのみの実験で得られた値で、ダウンカーマー内で形成された安定な流動層の空隙率を示す。なお、この値はガス速度、粒子速度に決まるまで定まり一定であるため、本実験におけるダウンカーマー内の流動層に用いたデータでも用いた。なお、ダウンカーマー内の粒子移動層が管全体を満たしていないため、操作条件が変化しても流動層の層厚が変化することによって空隙率が一定を保つと考えられる。さらに流動層の流動化実験で得られた最小流動化速度 \(U_{\text{min}} \)、その時の空隙率 \(\varepsilon_{\text{min}} \) および粒子基準のレイノルズ数 \(Re_{\text{min}} \) の値も表中に示している。

3. 背压下における粒子排出モデル

3.1 ダウンカーマー内粒子群の流動パターン

本実験において、噴流層に組み込まれたダウンカーマー内粒子群の流動状態が2種の流動パターンに大別できることが観察から認められた。その定性図を Fig. 2に示す。\(F_0 \) は、ダウンカーマー底面のオリフィスからの粒子群の自然排出速度である。前報で示した喷流層に組み込まれた背压下におけるダウンカーマーからの粒子排出実験の場合と同様に、安定な流動層状態（I）では、ダウンカーマー底面のオリフィス直上にあるアーチが形成され、マクロ的にはこのアーチを通じて粒子群が流出される。圧力勾配（\(\Delta P/L \)）の増加に伴い、粒子群の排出と閉塞が周期的に繰り返され、それに関じて流動層の層高 \(L \) が最大値 \(L_{\text{max}} \) と最小値 \(L_{\text{min}} \) の間を上下する不安定流動状態（II）になり、安定するためには圧力勾配に限界値があることが観察から認められた。この安定な流動層操作のための圧力勾配の限界値を（\(\Delta P/L_{\text{min}} \）とした。なお、不安定状態（II）は、Zhang および Rudolph が検討したようなスケールパラメータの操作では管全体が粒子で満たされているため、現れない流動パターンである。

前報で示したように、ある粒子供給速度 \(F \) の下でダウンカーマー内に層高 \(L \) の安定な流動層が形成されている場合、圧力勾配 \(\Delta P/L \) は一定値を保つ。本実験のようにダウンカーマーを噴流層に取り付けた場合には、噴流層の圧力損失 \(\Delta P \) が増加するとダウンカーマー底面のオリフィス部における背压が増加するため、オリフィスからの粒子排出速度 \(F \) もより一旦小さくなり、ダウンカーマー内の粒子量が増加する。この粒子

Table 2 Properties of particles used

<table>
<thead>
<tr>
<th>Particles</th>
<th>(D_{50}) [(\mu \text{m})]</th>
<th>(\rho_p) [kg/m³]</th>
<th>(\varepsilon) [-]</th>
<th>(\varepsilon_{\text{min}}) [-]</th>
<th>(U_{\text{min}}) [m/s]</th>
<th>(Re_{\text{min}}) [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soma sand (SS)</td>
<td>704</td>
<td>2670</td>
<td>0.401</td>
<td>0.413</td>
<td>0.407</td>
<td>19.1</td>
</tr>
<tr>
<td>Glass beads (GB)</td>
<td>780</td>
<td>2480</td>
<td>0.372</td>
<td>0.387</td>
<td>0.421</td>
<td>21.2</td>
</tr>
</tbody>
</table>

Fig. 2 Schematic diagram of flow patterns in a moving bed downcomer with an orifice
の蓄積によって、移動層の層厚が大きくなるため、オリフィスからの粒子排出速度が次第に増加する。そして $\Delta P/L$ が元の値と等しくなった時点で粒子排出速度は F まで回復し、再び層厚が一定の安定な移動層が形成される定常状態に戻ると考えられる。

3.2 パーレット排出モデル

Fig. 3 はダウンカーマー部分に着目したガスと粒子の流れの模式図である。ガスおよび粒子などの速度を考慮する際は上向きを正とした。ダウンカーマーの上端は噴流層の層上部で大気開放、一方下端のオリフィス部分は噴流層の圧力損失分加圧された背圧下にあり、ダウンカーマーの内部には移動層が形成される。この背圧下の操作が定常状態であれば、ダウンカーマー底部のオリフィスからの粒子排出速度 F は、上部ホッパーからの粒子供給速度、すなわち噴流層上表面部でオーバーフローによってダウンカーマー上端から流入する粒子速度と等しい。ここでダウンカーマー内の移動層に着目すると、F は次式で表される。

$$ F = |U_s| \cdot (1 - \varepsilon) \rho_p \cdot A_d $$

ここで U_s は移動層内の粒子速度 ($U_s < 0$), ε は空隙率, ρ_p は粒子密度である。

また、ダウンカーマー内のガス空塔速度を U_a。移動層内の粒子とガスの相対速度（ダウンカーマー断面積基準）を U_i とし、次式で定義した。

$$ U_i = U_s - \varepsilon \cdot U_s $$

さらにダウンカーマー底部のオリフィス直上的半球面積積のガス速度を U_g とすると、U_g は U_e を用いて次式で表すことができる。

$$ U_g = \frac{U_e}{2} \left(\frac{D_a}{D_o} \right)^2 $$

上式中 D_a, D_o はそれぞれダウンカーマーの内径、オリフィス径である。

粒子排出速度の安定性などを保持するためには、ダウンカーマー内の粒子群を前述の（I）の安定な移動層状態に保つ必要がある。そこで安定な移動層状態の（I）と不安定な状態（II）の境界を推定できることが重要となる。この境界点の推算に関して、Zhang and Rudolph は、実験結果に基づいてモデルを提案している。そのモデルでは、Fig. 2 に示すように境界点においてはダウンカーマー底部のオリフィス直上に形成される粒子の動的アーカが半球状にまで成長し、それを通過するガス速度 U_w が粒子の最小流動化速度 U_{mf} に等しい ($U_w = U_{\text{mf}}$) と考えた。Zhang and Rudolph の実験は、スタンドパイプ全体が粒子で満たされた移動層流れにおけるもので、また粒子径 677 μm のガラスビーズのみを用いた結果である。筆者らは前報でダウンカーマーのみの実験に対してこのモデルが概ね適用できることを示し、さらに、その実験における観察から $U_w > U_{\text{mf}}$ ではオリフィス直上に気泡が断続的に発生し、管内粒子群の層高が周期的に上下する不安定な状態（II）になることを示した。前報の実験は、多段噴流層における噴流層一段分の圧力損失に相当する背圧を絞り弁を用いて出荷させて行ったもので、得られたダウンカーマー内移動層の流動特性は、ダウンカーマーを実際に噴流層に取り付けた場合と変わりはないと考えられる。したがって、本実験結果にもこのモデルを適用した。このモデルに基づいたオリフィス直上半球面積積のガス速度 U_w および圧力勾配 $\Delta P/L$ と管内粒子群の流動の関係を Table 3 に示す。

上記の粒子排出モデルに基づいて噴流層に組み込まれたダウンカーマー内の安定な移動層状態およびその限界における各推算値を求めるために以下の式を用いた。

噴流層に組み込まれたダウンカーマーの粒子排出実験から、背圧下での粒子排出速度 F に関しては、
Table 3 Flow pattern in a moving bed downcomer with an orifice

<table>
<thead>
<tr>
<th>Dimensionless gas velocity [-]</th>
<th>Pressure gradient [Pa/m]</th>
<th>Flow pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_{\text{m}}/U_{\text{ad}} < 1)</td>
<td>((\Delta P/L) < (\Delta P/L)_{\text{cr}})</td>
<td>stable flow Region (I)</td>
</tr>
<tr>
<td>(U_{\text{m}}/U_{\text{ad}} = 1)</td>
<td>((\Delta P/L) = (\Delta P/L)_{\text{cr}})</td>
<td>instability point</td>
</tr>
<tr>
<td>(U_{\text{m}}/U_{\text{ad}} > 1)</td>
<td>((\Delta P/L) > (\Delta P/L)_{\text{cr}})</td>
<td>unstable flow Region (II): intermittent flow</td>
</tr>
<tr>
<td>(U_{\text{m}}/U_{\text{ad}} \gg 1)</td>
<td>((\Delta P/L) \gg (\Delta P/L)_{\text{cr}})</td>
<td>stoppage</td>
</tr>
</tbody>
</table>

各粒子に対して、Eq. (4) の相関式が得られている。

\[
\frac{F_0 - F}{F_0} = \alpha \left[\frac{(\Delta P)}{L \cdot \gamma_s} \right] \left(\frac{D_2}{D_0} \right)^2
\]

(4)

なお、\(F_0 \) はオリフィスからの粒子の自然排出速度の定義である。また、\(\gamma_s \) は \(\gamma_s = \rho_s \cdot (1 - \epsilon) \cdot g \) で定義される粒子移動層の単位体積重力、\(\alpha, \beta \) は粒子によって異なる定数で、実験結果より相馬砂では \(\alpha = 0.11, \beta = 2 \) およびガラスビーズでは \(\alpha = 0.15, \beta = 2 \) であった。さらに、ダウンカーマー内の安定な移動層におけるガスの流れは Kozeny-Carman の Eq. (5) が適用できた。

\[
\frac{\Delta P}{L} = \frac{180}{\epsilon^2} \frac{(1 - \epsilon)^2}{D_0^2} \mu \cdot U_t
\]

(5)

なお、式中の \(\mu \) は、ガス粘度である。

以上の Eq. (1)～(5) と Table 2 の物性値を用いて、後述するダウンカーマー内が安定な移動層状態であるときの粒子排出速度 \(F \) やガス速度 \(U_0 \)、粒子速度 \(U_s \)、また安定な移動層流れの限界点における圧力勾配 \((\Delta P/L)_{\text{cr}} \) などを推算し実験値と比較した。

4. 実験結果および考察

4.1 ダウンカーマー付き噴流層の安定操作範囲

Fig. 4 は、ダウンカーマー付き噴流層の層高 \(H = 50, 100, 150 \text{ mm} \) の場合の压力損失 \(\Delta P \) とガス速度 \(U \) の関係を示す。なお、\(\Delta P \) は、噴流層底部の入口ノズルによる圧力損失も含んでいる。また図には、同じ \(H \) でダウンカーマーがない通常の噴流層の場合の実験結果も示している。ダウンカーマー付き噴流層のデータは、系全体が安定な流動状態の下で得られたもので、安定な噴流層を保ちながら、同時にダウンカーマー内には安定な移動層が形成されている。したがって各 \(H \) で最小のガス速度が最小噴流化速度 \(U_{\text{m}} \) である。また \(U \) の増加とともに \(\Delta P \) は増加するので、この \(U_{\text{m}} \) において圧力損失が最小で、その値を \(\Delta P_{\text{min}} \) とした。安定な喷流化を保つためには、ガス速度を \(U_{\text{m}} \) 以上に、圧力損失を \(\Delta P_{\text{min}} \) 以上に保つ必要がある。一方、図中の

![Fig. 4 Relationship between pressure drop and gas velocity as a parameter of spouted bed height, in a spouted bed with and without a downcomer](image-url)

すくい層の圧力損失が \(\Delta P_{\text{min}} \) の下でダウホーク層の安定を保つことができる。
ダウンカマーがない通常の嘔流層の結果は、嘔流層状態からガス速度を減少させて得られた值で、固定層のデータまで含んでいる。この場合、最小嘔流化速度は、Uの減少によって嘔流層の中心部のスパウトが崩壊し、ΔPが急激に増加する時のかす速度と定義される。図に示すダウンカマー付き嘔流層のΔP_{\min}最小嘔流化速度U_{\min}が、通常の嘔流層の場合とほぼ一致し、層高Hの増加でいずれも顕著に大きくなることがわかる。さらに嘔流状態におけるΔPとUの関係はダウンカマー付きの場合とない場合とほんとんど変わらないことを示唆する。したかつて系全体の安定操作のためには、ダウンカマー内の粒子挙動の把握が最も重要となる。また、図より、層高$H=100$ mmでは、相馬砂より空隙率の小さなガラスビーズの方がΔP_{\min}が大きくなることが認められる。

Fig. 5 は、相馬砂（SS）を用いて得られた層高$H=100$ mmの場合のダウンカマー付き嘔流層の実験結果で、安定状態における圧力損失ΔPとダウンカマー内嘔流層高さLの関係である。粒子供給速度Fをパラメータとして示している。Fが一定であればΔPはLの増加でほんとんどに増加し、嘔流の傾きである圧力勾配は、Fの減少によって大きくなる。さらにEq. (S)を用いて、Fの設定値に対する嘔流層内の粒子とガスの相対速度U_rが求められ、図中にFとそのU_rを一緒に示している。Fが減少するとU_rは増加することになる。

また、得られた結果から安定操作が可能な範囲は、

図中に示す直線A、B、C、Dに囲まれた範囲になることがわかった。各直線の基準を以下に述べる。① 直線A：直線Aは、圧力損失ΔPの最小値ΔP_{\min}を示し、すなわち、嘔流層が形成されるためにはガス速度Uを最小嘔流化速度U_{\min}以上に設定しなければならないので、Fig. 4で示したようにガス速度に対応してΔPはΔP_{\min}以上でなければならない。② 直線B：嘔流層は移動層の高さLの上限で、ダウンカマーの長さL_4（=500 mm）を示す。L_4を超えると、フラッティング現象が生じ、粒子が嘔流層表面に溢出する。したがって、嘔流層の層高が増加するため、安定操作できなくなる。③ 直線C：嘔流層高さLの定数値を示す。前述したように安定な移動層を保つためには、圧力勾配$(\Delta P/L)$を限界値$(\Delta P/L)_{\lim}$以下に保つ必要がある。④ 直線D：嘔流層高さHを保持するための圧力損失の最大値を示す。圧力損失ΔPは、ガス速度Uの増加により増加する。また、Uの増加(ΔP)の増加は嘔流層内の粒子循環速度を増加させ、これによってファウンテン部からダウンカマー内に直接流入する粒子量が増加する。その結果として、直線D上の圧力損失増加になると、嘔流層とダウンカマーへの粒子供給速度のバランスが崩れ、嘔流層が層高Hを保持できなくなることを示す。以上の直線A〜Dのうち、前報で示されたようにダウンカマーのみの移動層操作においては直線B、Cのみで制限されたが、ダウンカマーを嘔流層に取り付けることによってさらに直線A、Dの制限が付加されることになる。

また、図中の破線Eは、直線Cの実験結果に対し,
前述した粒子排出モデルに基づいた \((\Delta P/L)_{\text{ext}}\) の推算結果である。推算は、モデルより \(U_p/U_a=1\) として Eq. (1)～(5) を用いて行った。すなわち Eq. (3) より \(U_a=2U_p\sqrt{D_p/D_o}\) となり、これを Eq. (2) に代入する。一方 Eq. (4) を用いて \(F\) を \((\Delta P/L)\) の関数として Eq. (1) に代入し、\(U_a\) について整理し、さらに Eq. (2) に代入する。上記によって得られた Eq. (2) の \(U_a\) を Eq. (5) に代入し、\((\Delta P/L)\) の解を求めた。この推算において各物性値は Table 2 の値を、オリフィスからの粒子自然排出速度 \(F_0\) は予備実験で検定された結果を用いた。図より実験値の \((\Delta P/L)_{\text{ext}}\) （直線 C の傾き）が推算値（破線 E の傾き）よりも大きく、約 1.25 倍であることかなら。これはモデルにおいて限界状態では \(U_p/U_a=1\)，すなわちオリフィス直上での動的アーチが半球状まで成長すると考えたが、Fig. 5 の実験では用いた粒子が相馬砂で形状が角ばっているためオリフィス直上的動的アーチがより強固で崩壊し難いことを示唆する。

Fig. 6 は、噴流層頂部からダウンカーマー上端の高さを変更し、噴流層の層高 \(H=50\) mm にした場合の実験結果である。Fig. 5 の \(H=100\) mm の場合と比較して、安定操作範囲が広くなる。この主な要因は、噴流層の層高 \(H\) が低くなると小さ噴流化速度に対応する最大圧力損失 \(\Delta P_{\text{max}}\) が小さくなり、図中の直線 A が下がることである。また、Fig. 5 で現れた直線 D は本条件では認められなかった。これは噴流層の層高が低くなった影響で、粒子循環量が減少したためと考えられる。すなわち噴流層のファウンテン部から直接ダウンカーマーに流入する粒子流量が \(F\) に比べて十分小さくなり、ガス速度が増加しても噴流層の層高を一定に保持できなくなると考えられる。さらに、安定した移動層は実験値（\((\Delta P/L)_{\text{ext}}\)）の実験値を、Fig. 5 の噴流層の層高 \(H=100\) mm の場合と同様に粒子排出モデルによる計算値（直線 E の傾き）よりも大きいことがわかる。なお、噴流層の層高 \(H=150\) mm の場合は、Fig. 6 の結果とは逆に最大圧力損失が高くなるため安定操作範囲が狭くなることが認められた。

Fig. 7 は、噴流層の層高 \(H=100\) mm 在におけるガラスビーズ（GB）の場合の計算結果である。Fig. 5 の相馬砂と比較して安定操作範囲が狭い。これは安定した噴流層を保持するための最小圧力損失 \(\Delta P_{\text{min}}\) が前述したように相馬砂の場合より大きくなり、図中の直線 A が上がることがある。また安定した移動層状態のための最大圧力勾配の実験値（直線 C の傾き）が、粒子排出モデルに基づく計算値（破線 E の傾き）の約 0.98 倍で計算値とはほぼ一致する。これは用いたガラスビーズの形状が球形に近いため、モデル通りにオリフィス直上の動的アーチが半球状まで成長し、限界に達したためと考えられる。以上の Figs. 5, 6 の結果から同一の粒子であれば、図中の直線 C と破線 E は、噴流層の層高 \(H\) によってほとんど変わらないことが認められた。これは、前述したように \((\Delta P/L)_{\text{ext}}\) はダウンカーマー内の粒子群が安定した移動層流れを保つための限界の圧力勾配であり、噴流層の条件には依存せず、ダウンカーマーの条件 \(D_a, D_o\) に、粒子物性値が一定であれば変わらないためである。
4.2 移動層内のガス速度および粒子速度と圧力勾配の関係

移動層内のガス速度および粒子速度に与える圧力勾配の影響を検討する。Figs. 8, 9 は、各々粒子径が704μmの相馬砂（SS）および780μmのガラスビーズ（GB）を用いた結果で、図の縦軸はガス速度 U_g、粒子とガスの相対速度 U_r、および粒子速度 $e\cdot U_g$、横軸は圧力勾配 $\Delta P/L$ を示す。図中の実験値は $D_s=7\text{mm}$ のオリフィスを装着した内径 $D_i=20\text{mm}$ のダウンカーマー（$D_i/D_s=2.86$）で得られた、安定な移動層操作（I）における実験結果である。そのため、$\Delta P/L$ の上限が圧力勾配の限界値 ($\Delta P/L_{\text{max}}$) の実験値を示す。

なお、縦軸の各速度はダウンカーマー断面積基準の値であり、横軸の 0 は自然排出の状態を指す。また図中にはダウンカーマーを噴流層に組み込む場合で、$D_s=12\text{mm}$ のオリフィスを装着した内径 $D_i=30\text{mm}$ のダウンカーマー（$D_i/D_s=2.50$）で得られた実験結果も示している。Figs. 8, 9 は相馬砂、ガラスビーズいずれの粒子を用いても、圧力勾配がダウンカーマー内のガス速度や粒子速度に与える影響はダウンカーマーを噴流層に組み込んだ場合もそうではなく場合と同様の傾向であること、U_r は圧力勾配 ($\Delta P/L$) の増加とともに直線的に増加することがわかる。また、ガス速度 U_g は相対速度 U_r の値に近く、したがって粒子下降速度 U_s の値は小さいが、($\Delta P/L$) の増加とともに自然排出時の速度から 0 に近づくことがわかる。さらに $U_r<0$ の場合がかなり狭く、実験データは全て $U_s>0$ の側に含まれる。これは、実際の安定操作では同流流れの
Fig. 9 Effect of pressure gradient on gas velocity and particle velocity in a moving bed downcomer for glass beads (GB)

みで操作されることを示唆する。なお、この結果は677μmのガラスビーズを用いたZhang and Rudolphの実験結果とも一致する。

一方、図中の3本の線はUₚ, ε･Uₚ, Uₚの計算値を示す。UₚとUₚはそれぞれEq. (5), Eqs. (4), (1)を用いて任意の(ΔP/L)に対して求められ、さらにその結果をEq. (2)に代入してUₚを得た。実験値は安定な移動層状態における値である。相馬砂、ガラスビーズいずれの場合でも計算値と実験値が良く一致することがわかる。

また図中には粒子排出モデルに基づく安定操作のための圧力勾配の限界値(ΔP/L)exの推算値を、ダウンカーバーを噴流層に組み込んだ場合の実験条件に対して求め、示している。Fig. 8 の相馬砂の場合、(ΔP/L)exの実験値は推算値より大きいが、Fig. 9 のガラスビーズの場合にはかなり一致することが認められ、Figs. 5～7における直線CとEの関係に対応する。さらにFigs. 8, 9 から相馬砂とガラスビーズのいずれの場合でも(ΔP/L)exの実験値はダウンカーバーを噴流層に組み込んだ場合の方が組み込まれていない場合より小さいことがわかる。これは、ダウンカーバーとオリフィスの面積比(Dₐ/Dₐ)²が噴流層に組み込まれる場合の方が大きいことに対応している。すなわち、安定操作上の限界は、前述した通りオリフィス直上の半球面積基準のガス速度が問題になるが、ダウンカーバー内移動層の圧力勾配は管断面積基準のガス速度に依存するためである。

4.3 背压下における粒子排出速度

Fig. 10 は、オリフィスからの粒子排出速度Fを自然排出速度F₀で無次元化した値に及ぼす圧力勾配ΔP/Lの影響を示すと、相馬砂とガラスビーズの安定操作における実験結果である。図から安定操作がF/F₀=1～0.5 の範囲で可能であること、また背圧下でのFが圧力勾配ΔP/Lの増加で減少し、ダウンカーバーを取り付けた噴流層の高層に依存せずΔP/Lで整理できることがわかる。図中には、安定な移動層操作のための最大圧力勾配(ΔP/L)exの推算値も示している。さらに二本の放物線は、それぞれ相馬砂とガラスビーズを用いたダウンカーバーのみの実験、すなわち噴流層一定の圧力損失に相当する背圧をパルプ操作で出現させた実験で得られたEq. (4)による計算値である。本実験結果もダウンカーバー内粒子群の挙動について、ダウンカーバーのみの場合と類似の流動特性を示すと考えられる。実際、実験値とEq. (4)による計算値がおおむね一致し、特にF/F₀=1～0.7の範囲では、自然排出状態により近いためよく一致することが認められる。

Fig. 11 は、F/F₀とオリフィス直上の半球面積基準のガス速度Uₚを粒子の最小流動化速度Uₚで無次元化したUₚ/Uₚの関係である。比較のために、ダウンカーバーを噴流層に組み込まずに行った背圧下における粒子排出実験のデータも示している。この実験結果は、最中に示すように内径Dₐ=30mmのダウンカーバーにDₐ=11～13mmのオリフィスを装着した条件で得られたもので、前述した安定な移動層状態(1)だけでなく不安定な状態(2)におけるデータも含んでいる。

また、図中に曲線で示した計算値は前述の3.2項における各定義式によって求められたF/F₀とUₚ/Uₚの関係である。計算は、まず任意のUₚを与え、
Eq. (3) によって U_g から U_g/U_{ad} を求める。一方、
Eqs. (1), (2), (4), (5) を用いて各 U_g における F を算出する。このようなにして逐次数値計算を行った。図によくいずれの粒子の場合も安定な移動層状態の $F/F_0 = 1\sim 0.7$ の範囲では、Fig. 10 と同様に実験値と計算値がよく一致し、またダウンカマーのみによる実験値もほぼ一致することがわかる。よって Eq. (4) をはじめとして上記のダウンカマーの実験結果より導出された粒子排出速度などの実験検査式がダウンカマー付近気流層の場合にも適用できることが認められた。

さらに、ダウンカマー内で安定な移動層が形成されるガス速度の範囲を図から読み取ると、本実験結果をもとにしてダウンカマーの実験結果と同様に、形状が球形の近いガラスビーズ（GB）では $U_g/U_{ad}<0.9$, やや角張った形状の粗馬砂（SS）では $U_g/U_{ad}<1.3$ であり、限界値モデルによる $U_g/U_{ad}=1$ に近いことがわかる。よって Table 3 に示した粒子排出モデル（10）が本実験結果にも概ね適用できることが認められる。なお、球形粒子の場合には限界点における U_g/U_{ad} の値が 1 に近いが、砂粒子の場合は曲線をやや上回る。これは角張った粒子では粒子排出口の動的アーチの強度が強く、半球以上に膨らみ成長し得るためと考えられる。

5. 結 言

ダウンカマー付近気流層の噴流層実験を、Geldart の D 粒子を用いて行い、ダウンカマー内にスムーズな移動層を形成させる系全体の安定な操作範囲を検討し、以下の結果を得た。

(1) 噴流層の形成させるための最低の圧力損失や最小噴流化速度などの基本的動特性は、噴流層内ダウンカマーの有無によってほとんど影響を受けない。
ことが認められた。
(2) ダウンカマー内の粒子群の流動状態が圧力勾配の変化によって、安定な移動層流れ（I）、粒子の排出と開塞を周期的に繰り返し、それに伴って移動層の層高が上下する不安定な流れ（II）の2つのパターンが観察された。
(3) ダウンカマー付き噴流層系全体の安定な操作範囲が、最小噴流速度における圧力損失、ダウンカマー内のスムーズな移動層の最大圧力勾配およびフラッティングを生じるダウンカマーの長さなどによって決定され、噴流層の層高が低いほど系全体の安定操作範囲が広くなることがわかった。
(4) 安定な移動層状態の時、圧力勾配の変化によるガス速度および粒子速度の実験値が、噴流層に組み込まれない場合ともほぼ一致し、粒子排出モデルに基づく計算値もよく一致した。また粒子径が700〜800μm程度の粒子では、圧力勾配の増加によってガスの流れはほとんど向流であることが確かめられた。
(5) 背压下での粒子排出速度に関しては、ダウンカマーにのみ実験から得られた相関式が、喷流層に組み込まれたダウンカマーの場合にもほぼ適用できた。またダウンカマー内の移動層が安定な粒子流れ（I）から不安定な粒子流れ（II）に移行する限界点の実験値が、噴流層に組み込まれない場合と同様に粒子排出モデルによる計算値とおおむね一致することがとっ

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_d</td>
<td>cross-sectional area of downcomer</td>
<td>[m2]</td>
</tr>
<tr>
<td>D_d</td>
<td>diameter of downcomer</td>
<td>[m]</td>
</tr>
<tr>
<td>D_s</td>
<td>diameter of supply orifice</td>
<td>[m]</td>
</tr>
<tr>
<td>D_i</td>
<td>diameter of gas inlet nozzle</td>
<td>[m]</td>
</tr>
<tr>
<td>D_o</td>
<td>diameter of orifice fitted to bottom of downcomer</td>
<td>[m]</td>
</tr>
<tr>
<td>D_{os}</td>
<td>particle diameter (equivalent specific surface diameter)</td>
<td>[μm]</td>
</tr>
<tr>
<td>D_r</td>
<td>column diameter</td>
<td>[m]</td>
</tr>
<tr>
<td>F</td>
<td>mass flow rate of solids under negative pressure gradient</td>
<td>[kg/s]</td>
</tr>
<tr>
<td>F_s</td>
<td>mass flow rate of solids under gravity</td>
<td>[kg/s]</td>
</tr>
<tr>
<td>g</td>
<td>gravitational acceleration</td>
<td>[m/s2]</td>
</tr>
<tr>
<td>H</td>
<td>spouted bed height (length between base of spouted bed and top of downcomer)</td>
<td>[m]</td>
</tr>
<tr>
<td>L</td>
<td>moving bed height in downcomer</td>
<td>[m]</td>
</tr>
<tr>
<td>L_d</td>
<td>length of downcomer</td>
<td>[m]</td>
</tr>
<tr>
<td>ΔP</td>
<td>pressure drop</td>
<td>[kPa]</td>
</tr>
<tr>
<td>Re_{st}</td>
<td>Reynolds number $[=D_{os} \cdot U_{st} \cdot \rho_p / \mu]$</td>
<td>[-]</td>
</tr>
</tbody>
</table>

References