JIS Z 8901 試験用粉体及び試験用粒子に規定された白色溶融アルミナの粒径分布特性

Size Distribution Characteristics of White Fused Alumina for JIS Z 8901 Test Powders and Test Particles

山下 憲一*, 中川 文雄**, 相川 勝保***
Ken-ichi YAMASHITA*, Fumio NAKAGAWA**, Katsuyasu AIKAWA***

Key Words: Test Powder, Test Particle, Particle Size Measurement, Coulter Counter, Image Analysis

1. はじめに

1987年(昭和62年)以来、(社)日本粉体工業技術協会では、表1および図1に示す白色溶融アルミナを粉体粒度測定器、粉体比表面積測定器の校正用および各種フィルターのろ過度試験用などとして販売してきた。

これらの白色溶融アルミナは、平成6年度に実施されたJIS Z 8901試験用ダストの抜本的な改正と相まって、平成7年度末に標本の試験用粉体2白色溶融アルミナとして規定されているに至った。

もとと白色溶融アルミナは、表1に示すJIS R 6001研磨材の粒度に定められている研磨材の微粉18種類の中から、粒径分布別に6種類を引用し、これらを精選したものである。その粒径分布は、JIS R 6002研磨材の粒度の試験方法で、電気抵抗試験方法*またはは沈降試験方法(研磨材の粒度試験のみに用いられている)で定められていることから、電気抵抗試験方法に準拠することが求められた。

ここでは、研磨材の上記規格で定めている電気抵抗試験方法により測定した白色溶融アルミナの粒径分布が規格値に適合しているかを調べるとともに、試験用粉体の規格で定めている液相沈降方法(ここではべベット法)、並びに最近この種の測定に使用されている画像計測方法のそれとではどの程度の差異があるかを明らかにして、本規格を通じ白色溶融アルミナを利用するユーザーの参考に供することにした。

2. 規格における諸規定

2.1 物理化学的特性

表2および表3に、JISに規定された白色溶融アルミナの種類および物理化学的特性を示す。

この規格では、粒径分布の外に化学成分、粒子密度および比表面積などの特性の測定方法、並びに測定値を規定している。

2.2 粒径分布

表4は、JISに規定された白色溶融アルミナの粒径分布の規格値を示したものである。

すなわち、白色溶融アルミナの粒径分布は、電気抵抗試験方法によって測定し、オーバーサイズ(質量基準)94%および3%の粒子径と、同じく50%の粒子径の

<table>
<thead>
<tr>
<th>種類</th>
<th>中位径(質量基準)の範囲(µm)</th>
<th>JIS R 6001研磨材の粒度</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>1.6～2.5</td>
<td>#6000に相当</td>
</tr>
<tr>
<td>- 2</td>
<td>3.5～4.5</td>
<td>3000</td>
</tr>
<tr>
<td>- 3</td>
<td>7.4～8.6</td>
<td>1500</td>
</tr>
<tr>
<td>- 4</td>
<td>13.0～15.0</td>
<td>800</td>
</tr>
<tr>
<td>- 5</td>
<td>28.0～32.0</td>
<td>400</td>
</tr>
<tr>
<td>- 6</td>
<td>54.0～60.0</td>
<td>240</td>
</tr>
</tbody>
</table>

* コーラーターカウンタを用いて粉体の粒径分布を測定する方法
図1 白色溶融アルミナの形状

表2 物理化学的特性

<table>
<thead>
<tr>
<th>項目</th>
<th>特性</th>
</tr>
</thead>
<tbody>
<tr>
<td>外観</td>
<td>白色・不規則状</td>
</tr>
<tr>
<td>化学成分</td>
<td>Al₂O₃…94%以上</td>
</tr>
<tr>
<td>粒子密度</td>
<td>3.9～4.0(g/cm³)</td>
</tr>
<tr>
<td>吸湿性</td>
<td>なし</td>
</tr>
<tr>
<td>分散性</td>
<td>良好</td>
</tr>
</tbody>
</table>

1) JIS R 6123により測定
2) JIS R 6125により測定

表3 比表面積

<table>
<thead>
<tr>
<th>種類</th>
<th>比表面積(㎡/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>4.3 ～ 4.5</td>
</tr>
<tr>
<td>2</td>
<td>1.5 ～ 1.7</td>
</tr>
<tr>
<td>3</td>
<td>0.7 ～ 0.9</td>
</tr>
<tr>
<td>4</td>
<td>0.3 ～ 0.5</td>
</tr>
<tr>
<td>5</td>
<td>0.1 ～ 0.3</td>
</tr>
<tr>
<td>6</td>
<td>0.05 ～ 0.15</td>
</tr>
</tbody>
</table>

3) JIS Z 8830により測定

表4 JISに規定された白色溶融アルミナの粒径分布（電気抵抗試験方法による測定值）

<table>
<thead>
<tr>
<th>種類</th>
<th>オーバーサイズ（質量基準）</th>
<th>オーバーサイズ（質量基準）</th>
<th>オーバーサイズ（質量基準）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>94%の粒子径</td>
<td>50%の粒子径</td>
<td>3%の粒子径</td>
</tr>
<tr>
<td>No. 1</td>
<td>0.8 以上</td>
<td>2.4±0.45</td>
<td>5以下</td>
</tr>
<tr>
<td>2</td>
<td>2.0 ～ 8.0</td>
<td>4.5±0.5</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>4.5 ～ 8.0</td>
<td>8.0±0.6</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>9.0 ～ 14.0</td>
<td>14±1</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>9.0 ～ 30.0</td>
<td>30±2</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>40 ～ 57±3</td>
<td>57±3</td>
<td>103</td>
</tr>
</tbody>
</table>

許容範囲とは定められている。

これは、前述のJIS R 6002研磨材の粒度の試験方法で、研磨材の粒径分布の測定方法に電気抵抗試験方法が用いられ、粒径分布はオーバーサイズ（質量基準）94％、3％および50％の粒子径の3点の値で規定しており、これを準用したことによるものである。

3. 試料

試料の物性は、表2および表3に示すとおりである。

外観は白色で、その形状は図1に示すとおり角部をもつ不規則状である。吸湿性はなく、分散性は比較的良好である。

4. 測定方法

表5は、白色溶融アルミナの粒径分布の測定方法および測定者の所属を示したものである。

電気抵抗試験方法は、電解液中に1個の小孔のある隔壁を設け、その両端に電極をおいて、電圧を加えると電流が流れるが、その抵抗は隔壁の小孔部の体積ですでに決まる。この電解液中に粉体粒子を分散させて薄い懸濁液とし、隔壁の一方から吸引すると場合その体積分

表5 測定方法および測定者の所属

<table>
<thead>
<tr>
<th>測定方法</th>
<th>測定器</th>
<th>所属</th>
</tr>
</thead>
<tbody>
<tr>
<td>電気抵抗試験方法</td>
<td>コールターカウンタ TA-2型</td>
<td>ホソカワミクロ (株)</td>
</tr>
<tr>
<td>画像計測方法</td>
<td>画像計測装置ルーザックス</td>
<td>(株)ニレコ</td>
</tr>
<tr>
<td>液相沈降方法</td>
<td>アンドレアゼンビペット</td>
<td>山下試験用粉体研究所</td>
</tr>
</tbody>
</table>
4.1 電気抵抗試験方法
4.1.1 試料の採取
試料は、バブチャラを用いて少量（約2g）採取し容量200mlのピーカに入れられた。

4.1.2 粒径分布の測定
（1）試料の粒子径に対応するように、電気抵抗式粒度測定器の細孔チューブを次のように取り付け、チューブにメガ指定の電解液（アイクトーン II）を満たした。

すなわち、白色溶融アルミナNo.1に対しては、21μmの細孔チューブを、No.2には50μm、No.3には100μm、No.4には200μm、No.5およびNo.6には400μmの細孔チューブをそれぞれ使用した。

（2）ヘキサメタリン酸ナトリウム（NaPO₄）₆の0.2質量％を分散剤として混合溶解した分散媒を試料入境入りピーカに加えた。

（3）ピーカを試料台の上に、超音波分散器により周波数28kHzで2時間間分散媒中の試料を分散した後、所定の操作で測定した。

なお、測定する粒子数は10,000～50,000個の範囲とし、粒子径に対応する体積分布を求めめた。

4.2 画像計測方法
（1）検査試料の作成
試料の白色溶融アルミナを楽さじを用いて少量採取し、これを沸水クーラーを用いてプレパラート上に分散した。試料のプレパラート上における分散、白色溶融アルミナの粒子同士の凝集をできるだけ少なくするために先細のガラス棒を用いて、粒子が重ならないようにした。

（2）粒径分布の測定
粒径分布の測定に先立ち、粒径形状を観察して異形粒子の混在について調べた。

白色溶融アルミナの粒子径は、粒子の投影面積と同じ面積を持つ円の直径、すなわち投影円相当径とし、凝集粒子が混入した場合は、あらかじめ手動によりこれを除外して測定した。また、一つの試料について、測定する粒子数は、400～500個の範囲とし、粒子径に対応する体積分布を求めた。

4.3 液相沈降方法
4.3.1 準備
（1）ヘラを用いて、容器中から任意に試料を採取した。

（2）ヘキサメタリン酸ナトリウム（NaPO₄）₆の0.03mol/lを混合溶解して、分散媒液を用意した。

（3）ピーカを挿入した状態で沈降管の標線まで分散媒を入れたとき、質量濃度が約1%になるように試料を秤量した（標準形ピペットで約5.0～5.5g）。

4.3.2 測定
分散媒に試料を入れ、家庭用ジュースミキサーで低速により約2分間攪拌後、これを沈降管に移し、ピペットを挿入した。次に、沈降管を手に持ち、左右上下に約5分間攪拌し、液温一定の流水槽中に静置し、一定時間毎に容量10cm³の懸濁液を吸い上げ、一定深さにおける粒子濃度の時間的変化を調べた。

5. 測定結果および考察
5.1 測定結果
電気抵抗試験方法、画像計測方法および液相沈降方法を用いた白色溶融アルミナの粒径分布の測定結果を図2および図3に示す。ここでは便宜上、中位径10μm以下の試料No.1～No.3（図2）と、10μm以下の試料No.4～No.6（図3）との二つに分けた。

また、図2および図3から求めたオーサーサイズ（質量基準）94%および3%の粒子径の値を表6および表7に、さらに同図から求めたオーサーサイズ（質量基準）50%の粒子径の値を表8に示す。

5.2 考察
5.2.1 形状
透過形電子顕微鏡、走査形電子顕微鏡および光学顕微鏡により撮影した顕微鏡像は、いずれも鈍い角部をもつ不規則状で粒度が比較的よく揃っている（図1）。異形粒子の混在はほとんど認められない。

5.2.2 粒径分布
（1）中位径10μm以下の試料No.1～No.3
電気抵抗試験方法と液相沈降方法との粒径分布の測定結果は、比較的よい一致を示している。また、画像計測法は前者に比べ粗粒側にやや離れている（図
これらの粒径分布を詳細に観ると、オーバーサイズ94％および3％の粒子径は電気抵抗試験方法、画像計測方法および液相沈降方法ともに規格値内にあるが（表6）。中位径は、電気抵抗試験方法および液相沈降方法において規格値に適合している。ただし、画像計測方法は、No.1において許容範囲より0.05μm、No.2で1.3μm、No.3では4.7μm大きくなる（表8）。

画像計測方法は、光学顕微鏡における本試料の粒径分布の測定可能な限界**と考えられる中位径2μm、4μmのNo.1およびNo.2において電気抵抗試験方法の測定結果に近接した値を示している。しかしながら、中位径8μmのNo.3においては、電気抵抗試験方法のそれとの差が広がる傾向がある。

(2) 中位径10μm以上の試料No.4～No.6

電気抵抗試験方法と液相沈降方法との粒径分布の測定結果は、No.4においてほぼ一致している。画像計測方法はNo.5において電気抵抗試験方法に比較的近接した粒径分布となっているが、それを択むNo.4およびNo.6では粗粒側にやや離れている（図3）。

これらの粒径分布を詳細に観ると、オーバーサイズ94％および3％の粒子径はすべての測定方法が規格値内にある（表7）。

中位径は、電気抵抗試験方法において、白色溶融アルミナのすべてが規格値に適合している。同様に、液
図3 白色溶融アルミナの粒径分布（No.4～No.6）

表6 白色溶融アルミナの粒径分布（No.1～No.3）

<table>
<thead>
<tr>
<th>測定方法（測定器）</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. 1</td>
<td>No. 2</td>
<td>No. 3</td>
<td></td>
</tr>
<tr>
<td>规格値</td>
<td>94％の粒子径</td>
<td>3％の粒子径</td>
<td>94％の粒子径</td>
<td>3％の粒子径</td>
</tr>
<tr>
<td>電気抵抗試験方法</td>
<td>0.8 以上</td>
<td>5 以下</td>
<td>2.0 以上</td>
<td>11 以下</td>
</tr>
<tr>
<td>（コールターカウンタ）</td>
<td>1.0</td>
<td>3.2</td>
<td>2.6</td>
<td>6.0</td>
</tr>
<tr>
<td>画像計測方法</td>
<td>1.0 以上</td>
<td>3.6 以下</td>
<td>3.8 以下</td>
<td>8.4 以下</td>
</tr>
<tr>
<td>（画像計測装置）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>液相沈降方法</td>
<td>0.8 以上</td>
<td>3.4 以下</td>
<td>2.6 以下</td>
<td>6.6 以下</td>
</tr>
<tr>
<td>（アン.ピベット）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

単位μm

Vol. 33, No. 11 (1996) (21) 859
表7 白色溶融アルミナの粒子径分布（No.4～No.6）

<table>
<thead>
<tr>
<th>測定方法（測定器）</th>
<th>オーバーサイズ（質量基準）（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.4</td>
</tr>
<tr>
<td></td>
<td>94%の粒子径</td>
</tr>
<tr>
<td>規格値</td>
<td>9.0以上</td>
</tr>
<tr>
<td>電気抵抗試験方法</td>
<td>11.0</td>
</tr>
<tr>
<td>（コールターカウンタ）</td>
<td></td>
</tr>
<tr>
<td>画像計測方法（画像計測装置）</td>
<td>15.0</td>
</tr>
<tr>
<td>液相沈降方法（アンピベット）</td>
<td>11.0</td>
</tr>
</tbody>
</table>

表8 白色溶融アルミナの粒子径分布（50%粒子径）

<table>
<thead>
<tr>
<th>測定方法（測定器）</th>
<th>オーバーサイズ（質量基準）（50%の粒子径（μm））</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.1</td>
</tr>
<tr>
<td>規格値</td>
<td>2±0.45</td>
</tr>
<tr>
<td>電気抵抗試験方法</td>
<td>1.8</td>
</tr>
<tr>
<td>（コールターカウンタ）</td>
<td></td>
</tr>
<tr>
<td>画像計測方法（画像計測装置）</td>
<td>2.5</td>
</tr>
<tr>
<td>液相沈降方法（アンピベット）</td>
<td>1.7</td>
</tr>
</tbody>
</table>

相沈降方法もNo.4において適合している。ただし、画像計測方法は、No.4において許容範囲より6μm, No.5で2.6μm, No.6では16μm大きくなる（表8）。

前述のとおり、画像計測方法において、中位径14μmの試料No.4は許容範囲より4.6μm大きいが、中位径30μmのNo.5では許容範囲との差が2.6μmとなり、その差が少なくなる。これは画像計測方法において、検錠試料の作成の際に、プレパラート上で単一粒子に分散し易くなることと、顕微鏡下で1個粒子の識別が容易になるためと思われる。しかしながら、同計測方法における粒径分布の測定がより容易な中位径57μmのNo.6で許容範囲との差が16μmとなることについては今後の検討が必要である。

以上のように、電気抵抗試験方法によって測定した白色溶融アルミナの粒径分布はいずれも規格値に適合する。また試料No.1～No.4においては液相沈降方法と同样に適合する。

さらに、電気抵抗試験方法と画像計測方法とは、50%粒子径に幾分の差異があるが、オーバーサイズ94%および3%の粒子径では適合する。

6. 結 論

平成7年12月1日付けで、昭和62年より（社）日本粉体工業技術協会で販売してきた白色溶融アルミナ（粒径分布別に6種類）が、JIS Z 8901試験用粉体及び試験用粒子に規定された。

このJISでは白色溶融アルミナの粒径分布を電気抵抗試験法（コールターカウンタ法）で測定することが決められているので、現在販売されている白色溶融アルミナの粒径分布は規格に適合するものであるかを上記方法によって調べた。これと合わせて試験用粉体の規格で用いられている溶融沈降方法、さらに最近この種の測定に使用されている画像計測方法でも測定した。

以上を総合すると大要次のことがいえる。

（1）電気抵抗試験方法によって測定した白色溶融アルミナの粒径分布はすべて規格値に適合する。
（2）液相沈降方法（ビベット法）は、試料No.1～No.4において電気抵抗試験方法に整合する。
（3）画像計測方法は、電気抵抗試験方法や液相沈降方法に比較して、やや粗粒側の粒径分布となる傾向が
ある。特に試料No.1～No.4については電子顕微鏡で
撮影し、これを画像計測することが望まれる。
（4）粒径分布の規格値において中位径の許容範囲は
適正であるが、94%および3%の粒子径の以上、以下の
規定はあいまいであることから、今後見直しが必要
である。

引用文献

1) JIS R 6123-1995 アルミナ質研削材の化学分析方法
2) JIS R 6125-1995 人造研削材の比重の測定方法
3) JIS Z 8830-1990 気体吸着による粉体の比表面積測定
4) 粉体工学会編、粉体工学用語辞典、p.109、日刊工業
（1977）