Thermal Non-equilibrium Activation of Carbon Dioxide on Cu catalysts

Methanol synthesis, $\text{CO}_2 + 3\text{H}_2 \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O}$, over Cu-based catalysts has been considered as the most promising catalytic process for the conversion of CO_2, in which the formate (HCOO) formation, $2\text{CO}_2 + \text{H}_2 \rightarrow 2\text{HCOO}$, is essential step because the reaction rate is very small$^{1,2)}$. To clarify the dynamics and mechanism of formate synthesis from the CO_2 hydrogenation over Cu catalysts, here, we applied supersonic CO_2 molecular beam to directly collide with the pre-dosed atomic hydrogen on Cu surface. We found that formate is efficiently produced by irradiating CO_2 beam heated above 1050 K to cold Cu(111) surfaces kept at 170 K (Fig. 1). That is, both translational energy and vibrational energy of CO_2 are indispensable to overcome the reaction barrier of the formate formation. Furthermore, the reaction rate is independent of the surface temperature of Cu. This thermal non-equilibrium reaction between CO_2 and atomic hydrogen are well explained by the E-R type mechanism that energetically excited CO_2 directly attacks an adsorbed hydrogen atom without trapping of CO_2 on Cu surfaces, which is reproduced by density functional theory (DFT) calculations.

Fig. 1 TPD method traces the product after molecular beam irradiation of CO_2 at various nozzle temperatures on Cu(111). The simultaneous desorbing peaks of H_2 and CO_2 at the peak position of 410 K results from the products of formate decomposition. At the 298 K nozzle temperature, no formate is formed. The Cu(111) surface temperature is 170 K, and the exposure of CO_2 beam is $2.75 \times 10^{-4} \text{ L}$. In both nozzle temperature cases, the H_2 peak at around 310 K is due to the associative desorption of H atoms on Cu(111).

References