線型汎函数の (MA)-条件 II

石井正（愛媛大学）

§3. C(X, R) 上の p.l.f. の (MA)-条件

本節で空間 X は完全正则とする。 Hewitt [6] は C(X, R) 上の任意の p.l.f. f が Baire 度度γ によって積分表示されることを次のように示した。まず任意の G ∈ ℙ(X) に

γ(G) = \sup_{\varphi \in \mathbb{P}(X), f \in C(X, R)} \{ f \}

を定義し、これより外測度 γ を

γ*(E) = \inf_{\varphi \in \mathbb{P}(X)} \{ f \}

によって定義し、任意の G ∈ ℙ(X) が γ*-可測であることを証明し、さらに得られる Baire 度度 γ を

(3.1) 任意の f ∈ C(X, R) は γ 度度 0 の集合を除いて X 上で有界である

という性質をもつことから

(3.2) I(f) = \int_X f(x) \, d\gamma. \quad f \in C(X, R)

を定義している。我々はこの Baire 度度 γ を I に対応する Baire 度度とよぶことにする。 p.l.f. I に対応する Baire 度度 γ は必ずしも半可約にはならない。 そこで γ が半可約であるときは次のことが成り立つ。

(3.3) もし γ が半可約なら、γ を半可約にする閉集合 F ⊂ X 上ですべての f ∈ C(X, R) は有界である。

証明. γ(X) = 1 の場合 f ∈ C(X, R) は γ 度度 0 の集合を除いて X 上で有界であるから、γ(x) ≤ β(x) とおく。 K = \{ x | f(x) ≤ β \} をとると F ⊆ K と仮定する。このとき f ∈ F - K が f をとると、K は閉集合であるから、K ∈ H, f ∈ ℙ(X) なる閉集合 H が存在する。閉集合 H は f を半可約にするから、γ(H) = 0 でなければならない。これは γ(K) = 1, H ∩ K = ∅ に矛盾する。かくして F ⊆ K から所要の結果を得る。

次の γ の性質は (MA)-条件を満たす p.l.f. I に対応する Baire 度度の性質と対比させるため定理の形で述べる。

定理 3. C(X, R) 上の任意の p.l.f. I に対応する Baire 度度を γ とする。このとき X の局所有限な閉集合族 \{ G_{\alpha} | \alpha \in A \} に対し、B = \{ \alpha | γ(G_{\alpha}) > 0 \} は有限集合である。

証明. γ(G_{\alpha}) > 0 なる可積分初の方程式 \{ G_{\alpha} \} が存在したとせよ。 G_{\alpha} ∈ ℙ(X) であるから、各 i に対して、Z_{ai} = G_{\alpha i}, Z_{ai} ∈ ℙ(X), γ(Z_{ai}) > 0 なる Z_{ai} が存在する。そこで x ∈ Z_{ai} ならば p_{i}(x) = i/γ(Z_{ai}), x ∈ G_{\alpha i} なら p_{i}(x) = 0, 0 ≤ p_{i}(x) ≤ i/γ(Z_{ai}) なるような p_{i} ∈ C(X, R) をとる。このとき \{ G_{\alpha i} \} が局所有限なから、p_{i}(x) = \sum_{i \in A} p_{i}(x) ∈ C(X, R) となる。そして I は γ によって積分表示されることから、I(p_{i}) = \sum_{i \in A} I(p_{i}) が成り立つ。 ところが

I(p_{i}) = \int_X p_{i}(x) \, d\gamma \geq \int_{x \in Z_{ai}} \gamma(Z_{ai}) \, d\gamma = i

であるから矛盾。

さて C(X, R) 上の p.l.f. I (以下 I(1) = 1 を仮定する) が (MA)-条件を満たすときは、定理 1 に示した方法によって、μ(X) = 1 かつ可約 Borel 度度 μ をつくり、I を積分表示することができる。この Borel 度度 μ を (MA)-条件を満たす p.l.f. I に対応する Borel 度度とよくすることにする。 (MA)-条件を満たす p.l.f. I には上のような Borel 度度 μ が対応するほか、一方で Baire 度度 γ が対応している。そして μ と γ とは任意の閉集合 G ∈ ℙ(X) に対しては明らかに等しい値をとる。よって (3.1) から

(3.4) 任意の f ∈ C(X, R) は μ 度度 0 の集合を除いて X 上で有界である。

また μ は可約であるから、(3.3) の証明が全く同様にして次のことがいえる。

(3.5) μ を可約にする閉集合 F の上ですべての f ∈ C(X, R) は有界である。

μ を可約にする閉集合 F は γ を半可約にするかどうか分からないことを注意しておく。このことは μ を Baire 度度の上に制限してできる Baire 度度と γ が一致するかどうか分からないことに起因する。 ところに

(3.6) コンパクト集合 F が μ を可約にするば、F は γ を半可約にする。

証明. G ∩ F = φ, G ∈ ℙ(X) なる閉集合 G を取る。 p ∈ G ∩ F なる点 p が存在するから、p ∈ H ⊆ G, H ∈ ℙ(X) なる閉集合 H が存在する。閉集合 H は f を半可約にするから、γ(H) > 0 でなければならない。これは γ(K) = 1, H ∩ K = ∅ に矛盾する。かくして F ⊆ K から所要の結果を得る。
定理 3 に対する μ の性質としては
(3.7) \(X \) の局所有効関集合族 \(\{G_a | a \in A \} \) に対して、
\(B = \{ x | \mu(G_a) > 0 \} \) は有限集合である。
証明． \(\mu(G_a) > 0 \) なるような可分開値の \(\{G_a \} \) が存在したとき、各 \(G_a \) に対して \(0 \leq f_a(x) \leq X_{a0}, I(f_a) > 0 \) なる \(f_a \in C(X,R) \) が存在することはから、\(Z \subset H \subset G_a, \ Z \subset \exists(X), H_i \subset \Psi(X) \) かつ \(\gamma(Z_i) > 0 \) \((i=1,2,\ldots) \)
なる \(Z_i, H_i \) をとることができる。したがって定理の証明と全く同じにして証明できる。

上の性質は Borel 测度で微分表示される p. l. f. に共通のもので \((MA)\)-条件を満たすときは

定理 4． \(C(X,R) \) 上の \((MA)\)-条件を満たす p. l. f. \(I \) に対応する Borel 测度を \(\mu \) とする。このとき \(X \) の任意の開集合 \(\{G_a \} \) に対して、この中から可分開値の \(G_{a_i} \) を選んで

\[
\mu(\bigcap_{i=1}^{\infty} G_{a_i}) = 1
\]

できる。このとき明らかに \(\{G_{a_i} \} | i=1,2,\ldots, m_a \) をえらんで

\[
1 - \frac{1}{n} < \mu(\bigcap_{i=1}^{m_a} G_{a_i}) = 1
\]

できる。このとき明らかに \(\{G_{a_i} \} | i=1,2,\ldots, m_a \) は可分開値をもつ。

次に \(C(X,R) \) 上の p. l. f. \(I \) は \((MA)\)-条件を満たすであろうか、これについて

定理 5． \(C(X,R) \) 上の p. l. f. \(I \) が \((MA)\)-条件を満たす場合には、\(X \) の任意の被覆 \(\{G_a \subset G \in \Psi(X) \} \) に対し
その中から可分開値の \(\{G_{a_i} \} \) をえらべて、

\[
\gamma(\bigcap_{i=1}^{\infty} G_{a_i}) = 1
\]

できることが必要かつ十分である。このこと \(\gamma \) に対応する Baire 测度である。

補助定理 1． \(C(X,R) \) の積集合から \(C \) の上の p. l. f. \(I \) は \(f_a(x) \geq 0 \) かつ \(sup f_a(x) = f(x) \in C \) なる \(C \) の上の任意の directed family \(\{f_a \} \) に対し、
\(sup \alpha I(f_a) = I(f) \) なる \((MA)\)-条件を満たす。

上のことはすでに、McShane [13] が注目している。

補助定理 2． \(C(X,R) \) 上の p. l. f. \(I \) は \(f_a(x) \geq 0 \) かつ \(sup f_a(x) = f(x) \in C^*(X,R) \) なる \(C(X,R) \) の上の任意の directed family \(\{f_a \} \) に対して、
\(sup \alpha I(f_a) = I(f) \) なる \((MA)\)-条件を満たす。
定理 6. \(C(X, R) \) 上のすべての p.l.f. が (MA)−条件を満たすためには、\(X \) が \(Q \)-space であることが必要かつ十分である。

証明. 必要. \(X \) が \(Q \)-space でないとすると, \(Y=X, X \nRightarrow Y \) かつ任意の \(f \in C(X, R) \) が \(f \) の \(Y \) 上に連続的に拡張されるような完全正則空間 \(Y \) が存在する。したがって \(\forall \xi \in Y, \exists \xi' \in X \) なる \(\xi' \) が存在する。この \(\xi' \) に対応して \(C(X, R) \) 上の p.l.f. \(\xi(f) \) を、\(\xi(f) = \#(f) \) によって定義する。ここで \(\#(f) \) は \(f \) の \(Y \) 上への連続函数としての拡張を示す。さて \(F = \{ f_a | f_a(\xi) = 0, 0 \leq f_a \leq 1, f_a \in C(X, R) \} \) とおくと、\(F \) は \(\sup f_a = 1 \) であるような \(C(X, R) \) における directed family であるから、p.l.f. \(\xi(f) \) が (MA)−条件を満たすことによって \(\sup f_a = 1 \) を得る。一方任意の \(f_a \in F \) に対して \(\xi(f_a) = f_a(\xi) = 0 \) であるから矛盾。

十分. \(X \) が \(Q \)-space のときは [6, Theorem 17] より, \(C(X, R) \) 上の任意の p.l.f. \(I \) に対して, \(\gamma(F) = 1 \) であるような \(X \) のコンパクト部分集合が存在する。よって定理 5 の条 1 から所要の結果を得る。

\(C(X, R) \) は compact open topology によって局所凸線形位相空間となる。\(C(X, R) \) 上の l.f. で、任意の \(B = \{ f | g_a \leq f \leq g_b \} \subset C(X, R) \) (\(g_a \in C(X, R), (a, b) = (1, 2) \) を \(R = (-\infty, +\infty) \) の中に存在する集合に属するものを bounded l.f.（b.l.f. と略記）ということにする。定理 6 から次の系 [6, Theorem 22] を得る。

系. 局所凸線形位相空間 \(C(X, R) \) の上の任意の p.l.f. が \(C(X, R) \) の上で連続であるためには、\(X \) が \(Q \)-space であることが必要かつ十分である。

証明. 必要. p.l.f. は b.l.f. であるから p.l.f. についていればよい。仮定によって p.l.f. は \(C(X, R) \) の上で連続であるから、(MA)−条件を満たす。よって定理 6 から明らか。十分は [6, Theorem 22] およびそれに証明ができる。

§ 4. \(C^*(X, R) \) 上の p.l.f. の (MA)−条件。

本節でも \(X \) は完全正則空間とする。\(C(X, R) \) の場合と同様に、\(C^*(X, R) \) 上の p.l.f. は必ずしも \(X \) における Baire 渦度で積分表示されない。これが可能であるためには、Glicksberg [3] の示すように (MA)−条件が成立することが必要かつ十分であり、さらにすべての p.l.f. が (MA)−条件を満たすためには \(X \) が pseudo-compact (\(X \) 上のすべての連続函数が有限) であることが必要かつ十分である。

(3)−条件については次の結果を得る。

定理 7. \(C^*(X, R) \) 上の (MA)−条件を満たす p.l.f. \(I \) に対応する Baire 渦度を \(\gamma \) とすると (3)−と同じ。このとき \(I \) が \(C^*(X, R) \) において (MA)−条件を満たすためには、\(X \) の任意の被覆 \{ \(G_a \) : \(G_a \in B(X) \) \} に対し、その中から可分有限の \{ \(G_a \) \} が選べて

\[
\gamma(S) = 1
\]

にできることが必要かつ十分である。

証明を定理 6 の証明と全く同じでできるから省略する。

定理 8. \(C^*(X, R) \) 上のすべての p.l.f. が (MA)−条件を満たすためには、\(X \) がコンパクトであることが必要かつ十分である。

証明. 十分の方は明らかだから、必要の方だけ証明する。さて \(\beta(X) \) を \(X \) の Stone–Čech の compactification とし、\(\beta(X) \nRightarrow X \) と仮定する。\(\forall \xi \in \beta(X) \) である \(\xi \) をとり、これに対応して \(C^*(X, R) \) 上の p.l.f. \(\xi(f) \) を \(\xi(f) = f(\xi) \) によって定義する。ここで \(\xi(f) \) は \(f \) の \(\beta(X) \) 上への連続函数としての拡張を示す。そこで \(F = \{ f_a | f_a(\xi) = 0, 0 \leq f_a \leq 1, f_a \in C^*(X, R) \} \) とおくと、\(F \) は \(\sup f_a = 1 \) であるような \(C^*(X, R) \) の directed family になるから、仮定により \(\sup f_a(\xi) = \xi(1) = 1 \) を得る。一方任意の \(f_a \in F \) に対して、\(\xi(f_a) = f_a(\xi) = 0 \) だから矛盾。

訳

9) p.l.f. \(I \) に対し (3.2) を満たす Baire 渦度を \(I \) に対応する Baire 渦度とよめてもよい、(3.2) から (3.1) が [6, Theorem 13] と同じ意味で証明できる。なお \(I \) に対応する Baire 渦度は一一にきまるかどうかは分からない。\(\gamma \) が regular なら一一にきまる。

10) \(X \) が \(Q \)-space でないときはこのようなことが起こる。

11) 詳しくは \(I \) を積分表示する Baire 渦度をす。勿論一意にきまるわけではない。