ANNUAL VARIATION OF LONGLINE CATCH-RATE OF BIG-EYED TUNA IN THE EASTERN PACIFIC TROPICAL WATERS

Jun Nakagome and Hirotaka Suzuki

The following results were obtained from an investigation on relation of annual variation of catch-rates of big-eyed tuna in the eastern Pacific tropical water area, between south-and-northwise, east-and-westwise and summer season-and-winter season:

1) All the catch-rates shown in division by lat. 10° and long. 5° were high in 1955 and in 1959 through 1961 in the northern part than the equator. In waters southern than the equator, the catch-rates kept leveling in 1958 through 1960 and declined in 1960 through 1962 in sub-area from long. 100°W to 115°W, kept leveling in 1957 through 1961 and declined in 1961 through 1962 in sub-area from long. 115°W to 135°W and declined in 1957 through 1959, increased in 1959 through 1961 and declined again in 1961 through 1962 in sub-area from 135°W to 150°W (Fig. 3).

2) Annual variation of catch-rate of big-eyed tuna in divisions of lat. 0°–5° in each sub-area looks almost same with the annual variation of catch-rate of the fish in divisions of lat. 5°–10° in each sub-area (Fig. 4).

3) Annual variation of catch-rate of big-eyed tuna in summer looks almost same with the annual variation of catch-rate of the fish in winter (Fig. 5).

4) Higher catch-rate of big-eyed tuna in sub-area D happened in 1958 through 1960, that of the fish in sub-area A happened in 1959 through 1961, that of the fish in sub-area B happened in 1960 through 1962 (Fig. 6).
漁業』誌[5,6]の緯度経度 5 度のますおよび月別釣獲率を用いた。
各海域の平均釣獲率経年変化は上記釣獲率を各海域每に平均し、釣獲率経年変化を東西間で比較する場合はこれを緯度 10 度経度 5 度のますおよび年の中で、南北間で比較する場合は各海域（図 1）の緯度 5 度毎のますおよび年の中で平均した。
夏冬の間で比較する場合は各海域および夏季または冬季の中で平均した。

夏季および冬季の期間は、この海域のメバチの釣獲率季節変化[5,6,7]、赤道冷水帯の消長[8]および 3、9 月の南北流[9]に基づき、赤道以北の海区は夏季を 6 ～ 11 月、冬季を 12 ～ 5 月、以南の海区は夏季を 12 ～ 5 月、冬季を 6 ～ 11 月とした。

また、同海域のメバチの分布の中心が赤道の北側と南側に分離していることも[10,11]、およびメバチの好発期が赤道の北側と南側とで異なること[5,6,7]を考慮して、赤道の北側と南側を分離して検討した。

なお、図 2 から明らかのように、10 ～ 20°S、100 ～ 120°W の海区と 100°W 以東の海区の釣獲率は 1961 年から 1962 年にかけて低下しているが、1960 年以前はほとんど資料がないので調査の対象からははずした。

3. 結果および考察

釣獲率の経度 10 度経度 5 度のます毎の経年変化は図 3 に示す。
同図から明らかのように、赤道の北側の海区は各ますの経年変化がほぼ一致し、1955 年と 1959 ～ 1961 年の釣獲率が高くなっている。ただし、130 ～ 135°W と 145 ～ 150°W の各海域の釣獲率は他海域に比し年間の差が小さい。

Fig. 4. 年間変動の捕獲率の北方と南方半分。
- ● - 0~5° ○ ○ - 5~10°
A~D: 各区域を示すFig. 1

Fig. 5. 年間捕獲率の北方と南方半分。
A { ● 100~150°W } Dec.~May ○ 130~150°W ○ June~Nov.
B~D { ○ Dec.~May } ● June~Nov.
A~D: 各区域を示すFig. 1

次に、各区域（Fig. 1）毎に夏季の捕獲率の経年変化を示すと、Fig. 4 に示すように、各区域の経年変化現象は比較的類似している。なお、A 区域の 1961 年 12~3 月の捕獲率は著しく高いが、これは捕獲率の比較的高い 130°W 以東の海域、捕獲席が 1961 年から増加したためで、1961 年と 1962 年は 130°W 以西の海域の捕獲率で表わした（Fig. 5 の○）。

そこで、年間の差の比較的大きい A, B, D 区域の捕獲率の経年変化を示すと、Fig. 6 に示すように、高捕獲域がD区域では 1958~1960 年、A 区域では 1959~1961 年、B 区域では 1960~1962 年にみられ、1年ずつずれている。
しかるに，マーシャル諸島からパルミラ島に至る海域のメバチの高鰹獲率は卓越年令群の出現によってもたらされている10。

もし太平洋東部赤道付近のメバチの鰹獲率も卓越年令群の出現によりもたらされたものとすれば，卓越年令群は12～5月にD海区に出現し，翌年の6～11月にA海区に出現し，さらに翌B海区に出現したこととなる。

4. 摘要

太平洋東部赤道付近（100～150°W）におけるメバチの鰹獲率年変化を東西，南北，夏冬間で比較したところ次のような結果を得た。
2) 緯度0～5度の水帯の鰹獲率年変化と緯度5～10度の水帯の鰹獲率年変化はどの海区もほぼ一致している（Fig. 4）。
3) 夏季の鰹獲率年変化と冬季の鰹獲率年変化とはどの海区もほぼ一致している（Fig. 5）。
4) 高鰹獲率は，D海区では1958～1960年，A海区では1959～1961年，B海区では1960～1962年にみられている（Fig. 6）。

5. 文献

1) 関野政夫：鰹漁業，10 (94)，p. 31 (1963)。
2) 三重県水試：大勢丸調査報告（1962年度協議会雑誌），(1963)。
3) 鰹研究会・神水試・幸水研：鰹漁業，75～84 (1961)。
4) 全国かつおブランド研究協議会：鰹漁業，1 (85)～15 (99)，(1962～1963)。
5) 久米 六：鰹漁業，13 (97)，pp. 38～38 (1963)。
6) 仲辺 洋：鰹漁業，52，pp. 29 (1959)。
7) 一一一：一一一，55，pp. 28 (1959)。
8) 上村忠夫：鰹漁業，53，p. 31 (1958)。
9) 中村広司：マグロ漁業平均漁況図（本文），p. 5 (1958)。
10) 仲辺 洋：本誌，26 (4)，p. 408 (1960)。