Studies on the Mucous Substance of Gloiopeltis and Some Other Red Algae. IV.

Katu Aoki

SYNOPSIS

The effects of monohydric alcohols (methylalcohol (Fig. 1), ethylalcohol (Fig. 2), isopropylalcohol (Fig. 3)), dihydric alcohol (ethylene glycol (Fig. 4)), acetone (Fig. 5), formalin (Fig. 6), and carbolic acid (Fig. 7) on the viscosity of 0.5% extract of Gloiopeltis furcata (○), G. tenax (●), Iridaea pulchra (×), and Chondrus sp. (+) were measured by the previously reported method.

余は既(1)に於てまでフクロフノリ及び其の他二三藻類の粘質物に及ぼす各種の影響に就いて報告したが、更にフクロフノリ、ホンフノリ、ギンアンサ、ツノマダの粘質物溶液に二三の化学的物質を加へたる場合の粘度の変化に関する研究を行ひたるににより兹に報告する。

粘度の測定法は同(1)に報告した方法と全く同様である。

アルコール類の影響：——一価のアルコールとしてメチルアルコール、エチルアルコール及びイソプロピルアルコールを用ひ、二価のアルコールとしてエチレングリコールを用ひた。

前記藻類の乾燥粉末1gに種々の濃度のアルコールを加へ、全量を200ccとし、よく振盪して定温内で加熱した後直ちに冷却して15℃に於て粘度を測定した。

第1表乃至第3表に明らかなる如くメチルアルコール、エチルアルコール及びイソプロピルアルコールに於ては何れも約30%附近に於て粘質物の粘度は最も上昇し、此の點を離れるに従ひ低くなる。粘度を高める割合はエチルアルコール及びイソプロピルアルコールは略々相等しくメチルアルコールは少しく劣る。グリコールに於ては第4図に見る如く濃度の増加と共に粘度は上昇する。

アセトンの影響：——実験方法はアルコール類の場合と同様である。第5図に示す如く約30%附近に於て粘度を最も高めるが其の割合は前記一価のアルコールよりも低い。

フォルマリンの影響：——実験方法は前記と同様である。第6図に明らかなる如く濃度の増加と共に粘度は上昇する。

石炭酸の影響：——前記の場合と同様に実験を行い第7図の如き結果を得た。即ち石炭酸によっては粘度は殆ど変化しないが僅かに上昇するように思はれる。石炭酸の飽和溶液を用ひた場合に於てもあまり大なる変化は認められなかった。

終りに御校閲を賜りたる大谷武夫先生に深謝す。

第 1 圖
メチルアルコールの影響
フクロフリョ：
○ ... 50℃ に加熱後直ちに冷却；
● ... 60℃ に 5 分間加熱後冷却；
× ... 70℃ に加熱後直ちに冷却；
＋ ... 80℃ に 5 分間加熱後冷却。
ホンフリョ：
○ ... 70℃ に加熱後直ちに冷却；
● ... 80℃ に 5 分間加熱後冷却。
ギンアンサウ：図はフクロフリョの場合と同じ。
ツノマタ：図は第 1 圖の場合と同じ。

第 2 圖
エチルアルコールの影響
フクロフリョ、ホンフリョ、
ギンアンサウ、
ツノマタ：図は第 1 圖の場合と同じ。

第 3 圖
イソプロピルアルコールの影響
フクロフリョ、ホンフリョ、
ギンアンサウ、ツノマタ：図は第 1 圖の場合と同じ。
○ ... 60℃ に加熱後直ちに冷却；
● ... 80℃ に 5 分間加熱後冷却；
× ... 80℃ に加熱後直ちに冷却；
＋ ... 80℃ に 5 分間加熱後冷却。
第4図 エチレングリコールの影響
○フクロフノリ (70℃ に加熱)
●ホンフノリ (60℃ に加熱)
×ギンアンサウ (60℃ に加熱)
＋ツノマタ (70℃ に加熱)

第5図 アセトンの影響
○フクロフノリ (65℃〜70℃ に加熱)
●ホンフノリ (65℃〜70℃ に加熱)
×ギンアンサウ (65℃〜70℃ に加熱)
＋ツノマタ (65℃〜70℃ に加熱)

第6図 フォルマリンの影響
○フクロフノリ (50℃ に加熱)
●ホンフノリ (65℃ に加熱)
×ギンアンサウ (65℃ に加熱)
＋ツノマタ (60℃ に加熱)

第7図 石炭酸の影響
○フクロフノリ (50℃ に加熱)
●ホンフノリ (80℃ に加熱)
×ギンアンサウ (50℃ に加熱)
＋ツノマタ (80℃ に加熱)