Two experiments were executed to investigate the correlation among water temperature, metabolic rate and swimming behavior of red sea bream *Pagrus major*. In the former experiment, the relationship between oxygen consumption and water temperature was measured in laboratory respirometry trials. The result showed water temperature (*T*, °C) has the following correlation with oxygen consumption (*OC*, mg min.⁻¹ kg⁻¹): \[OC = 1.47 + 0.01 \times 1.22T, R^2 = 0.92. \] In the latter experiment, a wild adult fish was tracked in the open sea using an ultrasonic transmitter to record the horizontal migration paths, vertical swimming trajectory and ambient water temperature. The fish rested on the bottom during the day. While at night, it swam up and down within the depth range 30 to 80 m. The ambient water temperature ranged from 18.5 to 22.9°C. In the period of resting, the red sea bream was estimated to consume oxygen ranging from 1.91 to 2.55 mg min.⁻¹ kg⁻¹ in the open ocean. During the experimental period of 28 days, the fish remained within a shoal and moved only small horizontal distances. Fluctuation of ambient water temperature seemed to have little effect on the swimming behavior of red sea bream.

キーワード：マダイ，水温，酸素消費量，バイオテレメトリー

魚類では、陸上の動物と比べて水中での行動生態を直接的に観察、測定することが困難である。そのため魚類の行動生態は、標識放流による再捕結果からの推定や漁獲量の空間的、時間的な変動からの推定といった、間接的な研究方法によって解析が行われてきた。しかし標識放流の場合、再捕率が低いことや放流点と再捕点の2点の情報しか得られないこと、また漁獲量の解析の場合は、データ収集を漁業による捕獲に頼っているため、商業的に漁業の対象にならない海域のデータが得られない等の問題がある。一方、エレクトロニクスや超音波による音響工学の発展に伴い、遠隔探査技術の手法である、バイオテレメトリーが水生生物にも十分適用できるようになった。例えば、自然海域を自由に遊泳する個体の二次元移動と移動経路に沿った水温・水深情報を直接的にしかも連続的に得られるようになった。

普段、直接目にすることのできない自然環境下での魚類のとおりの姿を把握することは、非常に魅力的である。しかし現在では、重要な食料資源である水産生物の資源変動を解明するためにも役立つ。しかし、魚類が自然環境下で活動する観察やその時の水温・水深と、個体の生理的変化との関係を定量的に測定した例はほとんどない。例えば、酸素消費量、個体のエネルギー代謝を定量的に捉えたものと考えられる。このような養殖施設や活魚輸送において、収容可能性を推定する場合、第一に考慮すべきパラメーターであり、古くから室内実験によって様々な魚種の酸素消費量が測定されてきた。変動動物である魚類は、水温の変化に伴って体温が変化する。また、代謝過程は酸素によってつかさどられているため、体温の上昇に伴って酸素消費量が増加する。そのため魚類では、水温の上昇がそのまま酸素消費量の増加となっている。水温の変化に伴う代謝量の変化は、複雑な水温構造、

1 京都大学大学院農学研究科応用生物学専攻（Applied Biosciences, Graduate course of Agriculture, Kyoto University, Kyoto 606-8502, Japan).

2 京都大学大学院情報学研究科社会情報学専攻（Social Informatics, Graduate School of Informatics, Kyoto University, Kyoto 606-8502, Japan).
マダイの酸素消費量と水温

水温変動を示す野外においては、遊泳行動に大きな影響を与えることが予想できる。すなわち、野外での代謝量の変化を定量的に観測することは、生物とそれをとりまく環境との関係を明らかにする重要な鍵である。しかし、従来の方法では開放系の野外において、酸素消費量を直接測定することは不可能であった。そこで、本研究では平常の酸素消費量と水温の間の一定の関係が成り立つことに注目し、実験室内で得た基礎資料を、海域で得られた結果と組み合わせて解析することにより、野外での代謝量を観測することを試みた。沿岸海域で最も重要な資源のひとつであるマダイ Pagrus major を供試魚として選び、本実験を行った。

最初に室内実験により、平常の酸素消費量と水温との関係を求めた。マダイについて酸素消費量を測定した研究例はあるが、海域でマダイが観測すると考えられる広い水温範囲にわたって測定を行った例はない。さらに酸素消費量は水温だけでなく、酸素分圧や二酸化炭素分圧、水質、外界からの刺激、測定器の大きさ等の環境要因より、さらにそれは同一種であっても、大きさ、活動度、飢餓度等の個体側の要因によって変化やすい。これらの要因を一定に保つために、独自に装置を製作して測定を行った。次に野外でバイオテレメトリーシステムを用いて、広範囲にわたるマダイの移動経路に沿った水温および遊泳行動を直接測定した。ここでは発信器のセンサーによって測定された水温と水深を、マダイが観測した水温（観察水温）と遊泳していた水深（遊泳水深）とみなした。この測定に際しては、対象魚が広範囲に移動しても追跡可能な新しいシステムを使用した。そして水温を共通のパラメーターとして、野外での平常の酸素消費量の観測をお試みにした。

材料および方法

室内実験 尾長31−45 cm、体重470−1650 g の養殖マダイ 4 個体を供試魚として、1996 年 7−11 月にかけて京都大学大学院農学研究科附属水産実験所において実験を行った。実験はすべて、タイマーを用いて照明を L12, D12 に調節した実験室内で行った。実験に先立って、マダイは自然水温で飼育し、配合飼料を 1 日に 1 回、10 回として飼料を与えたが、消化活動の影響を抑えるために実験開始 2 日前から給餌を中止した。呼吸室に供試魚を静かに投入し、海水を循環させると同時に酸素消費量の測定を開始した。飼育水温を 1°C hour−1 の速度で約 5°C 変化させた後、水温を一定に保ち、10−30°C の範囲で酸素消費量を測定できるように設定した。

酸素消費量の測定は板沢を参考にして、Fig. 1 に示すような流下式のシステムで行った。システムの構成は以下の通りである。呼吸室は 10 mm 厚のアクリル板で作製した飼育水槽 (56 L) で、マグネットポンプを用いてこの流入口より酸素飽和状態の海水を一定量流入させ、他方より供試魚が呼吸し後の海水を排出させた。呼吸室の周囲を発泡スチロール板で覆い、恒温性を高めると共に、外界からの視覚的刺激を遮断するために、実験中の呼吸室は薄暗く保たれた。水槽上部には直径約 3 cm の観察穴を設け、数時間おきに目視観察を行った。呼吸室通過後の溶存酸素量を測定することにより、単位時間あたりの酸素消費量 (OC, mg min−1) は以下の式で算出できる。すなわち,

\[OC = (DO_m − DO_{in}) × F \]

Fig. 1. Arrangement of experimental apparatus for the oxygen consumption measurement.
Data processing was shown in thin arrows. Bold arrows show the water flow.
ここで \(D_{0m} \) は呼吸室通過前の海水の溶存酸素量 (mg l\(^{-1}\)), \(D_{0mm} \) は呼吸室通過後の溶存酸素量 (mg l\(^{-1}\)), \(F \) は流速量 (l min\(^{-1}\)) である。飼育水中の酸素濃度の低下による呼吸依存を防ぐために, 呼吸室通過後の酸素飽和度が 70\% 以下を下回らないように流速量を調節した。溶存酸素量は, 隔膜式ガルバニ電池法の溶存酸素計（堀場製作所 OS-15）で測定した。各測定前に 5\% 亜硫酸ナトリウム溶液と, 30 分間エアレーションを行ったイオン交換水で溶存酸素計のキャリプレーションを行った。

呼吸室通過前後の溶存酸素量と流速量, および水温の値をアナログ出力し, A/D コンバーターを経由した後, パーソナルコンピューターに入力し記録した。

野外実験 1996 年 9 月 7 日の早朝に, 京都府舞鶴市野原の定置網で捕獲された尾長 50 cm, 体重 2200 g のマグイを実験に用いた。実験に先立ち, 500 l タンクで 2 日間飼育し, 遊泳行動と異常がないことを確認した後, 0.02\% のフェノキシエタノールで麻酔し, 電気配線終了用のインシュレート用いて, 超音波発信器を背後に装着した。沈下後, 遊泳行動と異常がないことを確認し, 500 l タンクでさらに 2 日間飼育した。

実験を行った海域の海底地形と定置網の位置を Fig. 2 に示す。実験には京都大学大学院農学研究科附属水産実験所の調査船「緑洋丸」(18 t) を用いた。パイオテレメトリーシステムの概略は以下の通りである (Fig. 3)。発信器 (Vemco V16PT) は水温・水深センサーを備え, 常波数 50 kHz, 長さ 80 mm, 直径 16 mm, 空中重量 20 g, 電池寿命は約 30 日である。ハイドロフォン (Vemco V41) は, 指向性を持たずを前方左右の方向に 4 つ備えている。船底に固定したボール, あるいは船尾から曳航する曳航体にハイドロフォンを取り付け, 供試魚を追跡した。発信器からの信号はハイドロフォンを介して 4 チャンネル受信機 (Vemco VR28) で受信した。受信機はパーソナルコンピューターに接続され, モニター上に 4 つのハイドロフォンの受信強度と個体の方向が表示される。それと同時にパルス間隔によって決定した供試魚の水深および水温と, GPS (Furuno GP-500 MARK-2) によって決定した船の位置も表示・記録される。供試魚の移動方向に船を進ませ, 最も供試魚に接近したと思われる位置, すなわち 4 チャンネルすべてのハイドロフォンで信号が受信された位置をもって, 供試魚の位置とした。

追跡の間, 供試魚の周辺で複数回 CTD 観測を行い, 調査海域の水温および塩分の直直構造を調べた。さらに京都府立海洋センターが, 舞鶴市田井馬定置網釣船 (Fig. 2) に設置した RMT 水温計による測定記録を利

Fig. 2. Research area, location of set net, and horizontal swimming path of the red sea bream (arrow).

Dotted thin lines are isobaths. Solid circles show the releasing point, shoal A and shoal B.

Fig. 3. Experimental setup for the ultrasonic biotelemetry system.
マダイの酸素消費量と水温

結果

室内実験 体重 620 g の供試魚について、測定開始から 3 日間の酸素消費量の変化を Fig. 4 に示す。この間の水温は 20.4 ± 0.1°C (mean ± S.D.) であった。測定開始当初は 1.5 mg min⁻¹前後の微分酸素消費量を示したが、約 20 時間で 1.2 mg min⁻¹ 前後の値となり、その後は比較的安定した値を示した。目視観察では供試魚を呼吸室に投入してから約 10 時間半は供試魚が水槽の端に頭を押しつけて上下に移動する行動が見られたが、その後は落ち着いた。そしてこのような行動を見せた期間は、酸素消費量の高かった期間と一致した。この結果供試魚が新しい実験環境に順応するまでに約 20 時間を要すると判断し、解析には供試魚を呼吸室に投入してから 20 時間経過したデータを用いた。

体重 470～1600 g の 4 個体について、水温 (T, °C) と体重 1 kg あたりの酸素消費量 (OC, mg min⁻¹ kg⁻¹) の関係を Fig. 5 に示す。水温の上昇に伴い酸素消費量は指数関数的に増加した。野外で直接測定したマダイの経験水温から、平均の酸素消費量を見積もるために、水温 10～30°C の範囲において水温 (T) と酸素消費量 (OC) との関係を表す回帰式を求めた。Brett の式を参考にして以下の指数関数を回帰したところ、高い相関が得られた (式 (1))。

\[OC = 1.47 + 0.01 \times 1.22^T, \quad R = 0.92 \]

(1)

野外実験 9 月 11 日から 10 月 9 日までの約 1 ヶ月間わたって、ほぼ 1 週間に 1 回の頻度で 5 回、間欠的に追跡することができた (Table 1)。供試魚は放流地点から約 400 m 離れた雄 A、あるいは雄 A から約 300 m 離れた雌 B ととり、400 m を超える長距離移動は見られなかった (Fig. 2)。

遊泳水深と経験水温の変化の例を、昼夜別に Fig. 6 に示す。日中は水深 50 m 付近にとどまり、显著な遊泳水深の上下変化は確認できなかった。一方夜間は、10 m min⁻¹ 前後の速度で水深 30～80 m の層を 15 m から 30 m の範囲で上昇・下降しながら遊泳した。

CTD 観測による、周辺海域の水温および塩分の鉈直構造 (Fig. 6b, d) を見ると、表面水温が約 25°C で、20 m 深い混層が確認できる。調査期間中、定期的に CTD 観測を行った結果、表層の混層は次第に薄くなっていていたが、マダイの遊泳層である 30 m 深まで達することはなかった。そのため、遊泳水深が一定であった昼間は、経験水温も一定であった。しかし、9 月 17 日の 11:20 頃は遊泳水深はほとんど変化していないにも関わらず、経験水温が約 1.5°C 低下する現象が観られた。一方夜間には、遊泳水深の変化に伴って、経験水温も 1～2°C 変化した。全調査期間中のマダイの経験水温は、18.5～23.0°C の範囲であった (Table 1)。

田井島立における水深 56 m 地点の海底付近の水温の 24 時間移動平均を Fig. 7 に示した。調査期間中、海底付近の水温は 3～6 日の周期で約 18°C から 22°C の範囲で変化した。

OC=1.47+0.01×1.22^T R=0.92

Fig. 5. Relation between temperature and oxygen consumption.

Body weight of red sea breams were 470 g (solid circle), 600 g (solid square), 620 g (solid lozenge) and 1600 g (solid triangle). Arrows show the range of ambient water temperature (18.5–23.0°C) and estimated oxygen consumption of resting red sea bream in the open ocean (1.91–2.55 mg min⁻¹ kg⁻¹).
Table 1. Ambient water temperature and swimming depth of red sea bream

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Position</th>
<th>Temperature (°C)</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>11 Sep. 12:57–12 Sep. 15:54</td>
<td>Shoal A–B</td>
<td>18.5</td>
<td>23.0</td>
</tr>
<tr>
<td>17 Sep. 10:12–14:03</td>
<td>Shoal B</td>
<td>18.5</td>
<td>20.7</td>
</tr>
<tr>
<td>25 Sep. 10:47–13:55</td>
<td>Shoal B</td>
<td>19.1</td>
<td>21.1</td>
</tr>
<tr>
<td>3 Oct. 15:40–16:42</td>
<td>Shoal B</td>
<td>18.5</td>
<td>19.6</td>
</tr>
<tr>
<td>9 Oct. 16:40–21:50</td>
<td>Shoal B–A</td>
<td>18.9</td>
<td>23.0</td>
</tr>
<tr>
<td>Overall</td>
<td>—</td>
<td>18.5</td>
<td>23.0</td>
</tr>
<tr>
<td>Daytime</td>
<td>—</td>
<td>18.5</td>
<td>22.8</td>
</tr>
<tr>
<td>Night</td>
<td>—</td>
<td>18.9</td>
<td>23.0</td>
</tr>
</tbody>
</table>

Fig. 6. (a) Example of time sequences of temperature (small dot, lower side) and depth (large dot, upper side) experienced by the red sea bream during the day. (b) Vertical profile of temperature (bold line) and salinity (thin line) around the red sea bream at 12:00, 17 September. (c) Example of time sequences of temperature (small dot, lower side) and depth (large dot, upper side) experienced by red sea bream during the night. Dark and white bars indicate night and day, respectively. (d) Vertical profile of temperature (bold line) and salinity (thin line) around the red sea bream at 03:55, 12 September.

考 察

室内で水槽実験を行った結果、水温の上昇に伴いマダイの酸素消費量は増加した（Fig. 5）。酸素消費量の測定は、1℃ hour⁻¹の速度で水温を変化させ、その後水温を一定に保って行った。そのため、飼育水と魚体間の熱交換は既に完了しており、測定時の水温と供試魚の体温はほぼ等しかったと思われる。代謝過程は顕著に形成されているために、体温の上昇に伴って酸素消費量が指数関数的に増加したと考えられる。

野外でのバイオテレメトリー実験を行った結果、供試魚は日中、水深50 m付近にどまっていた。魚群探知機によると、この海域の水深は約50 mであったことから、海底にどまっていたと考えられる。一方夜間に
マダイの酸素消費量と水温

Fig. 7. 24 hour running mean water temperature at Tai-Umatake.

Shaded circles indicate the day when the fish was tracked.

は、10m以上の遊泳水深の変化がみられ、それにも伴って1～2°Cの経験水温の変化が確認された（Fig. 6）。町中、柿木らのマダイについて行ったバイオメトリック実験で、マダイが鉛直的に移動することで、数°Cよりもおおよそ水温変化を短時間で経験するのを見ている。天然海中で、この程度の水温変化はマダイの遊泳行動を制限しないと考えられる。

また、鉛直的な移動に伴いわずかではあるが、経験水温の変化とは別に、周辺海域の水温の自然変動に伴う受動的な経験水温の変化について、長期間の水温の観測記録（Fig. 7）から考察した。海底付近の水温は周期的に変化し、変化の幅はほとんどの場合、2～3°C前後であるが、10月3日から10月5日にかけて4°C近く水温が上昇し大きな変化がみられた。京都府沿岸の若狭崎太平洋西部水域では基層水温が数日～数日間の時間規模で変化することが知られている。今回実験でマダイのとまった瀬の流れに、同様な現象が起きていたと考えられる。10月9日の経験水温の平均値が他の調整日の平均値に比べて1.5°C以上高かったことや、10月17日の11:20頃に遊泳水深はほとんど変化していないのに対して、経験水温が1.5°C低下した現象（Fig. 7）はこうした周期的な変動を反映したものと考えられる。このことはマダイが水平的ににも鉛直的にも移動することなく、一定の場所にとまっていても、周辺海域の水温変動による水温変化を経験することを意味する。

以上のように、自然環境下でマダイは鉛直移動に伴う水温変化と、周辺水域の周期的な水温変化を経験しており、本実験での経験水温の範囲は全調査期間を通じて18.5℃～23.0℃であった。室内実験で得た回帰式の1から、この水温範囲でのマダイの平常の酸素消費量は1.91～2.55 mg min⁻¹ kg⁻¹と見込まれることができることが（Fig. 5）。しかし、遊泳水深の変化に伴う経験水温の変化の中には、非常に短時間で経験したものも含まれる。一般に外温動物である魚類の体温は水温変化を反映するが、急激な水温変化に対しては体温が水温に追従するのに時間要することが知られている。（ニシマスやキジマでは、数°Cの急激な水温変化に体温が追従するのに2～3.5秒を要する。）

Crawshawは、体重1.5kgの魚の体温と水温との間の、約95%の体温変化が完了するのに10分を要すると述べている。また、水温変化に伴う体温変化が代謝過程に影響を与えるにさらには時間要し、Moffit and Crawshawは、ヒトについて行った室内実験で、2～6°Cの水温変化が酸素消費量に影響を及ぼすと、実験に基づいて求めた変化より小さいとも言っている。したがって、急激な遊泳水深の変化に伴って経験水温が変化した場合には、水温変化に伴う体温変化が形成され、代謝過程に影響を与える前にもとの水温に戻ってしまつ可能性があるため、実際の代謝の変化は室内実験に基づいて求める変化より小さかったかもしれない。

しかし、短時間に経験していることや、周辺水域の水温が最大で約4°Cday⁻¹変化でも温度移動を行わなかったことから、この程度の水温と酸素消費量の変化はマダイの遊泳行動に影響を及ぼさないと考えられる。また、室内実験で求めた回帰式に基づいて、18.5～23.0°Cの水温変化でQ10を算出すると、1.91となった。一般に魚類ではQ10は2前後の値を示すものである。これらからも、今回供試魚が経験した水温変化は、生理的に無理のないものであったと考えられる。京都府沿岸のマダイは秋から冬の間にかけての水温低下とともに、丹後海から徐々に外へ移動していくと考えられている。

今回調査ではこうした現象を捉えることができなかったが、今後10月から11月にかけて同様の調査を行うことで、周辺水域の季節的な水温低下に伴う代謝量の変化がマダイの遊泳行動に影響を及ぼす現象について明らかになることが期待される。

野外での飼育代謝量は標準代謝量、遊泳活動に伴う代謝量、消化活動に伴う代謝量の和で表される。遊泳活動に伴う代謝量については、個体が高速で遊泳するため活動代謝量も増大することが知られている。しかしこの実験の結果では、マダイは水平的に大きく移動することなく特定の瀬の周りをとどまっていた。瀬の周りでの局所的な移動については捉えることができなかったが、摂餌や逃避に伴う突発的なものも除けば、高温で遊泳する行動はほとんど示さなかったと考えられる。特に

*3 栃本日記からみた京都府沿岸の漁場。京都府立海洋センター季報、16, 16 (1983).
日没から日没までは鉛直にほとんど動くことなく底にとどまており、また、日没後は視覚にみられる遊泳水深を変化させる行動についても、鉛直移動速度は最大でも12 m min.^{-1} であった。これは今回実験に用いた体長50 cmの個体では、0.4 BL sec.^{-1} にすぎず、総代謝量中で遊泳活動に伴う代謝量の割合は少なかったと考えられる。今後、捕食および消化活動に伴う代謝量の変化について明らかにすることで、野外での総代謝量について更に詳しく観察もできるであろう。

謝辞

京都府立海洋センターには田井馬場定義編著の水温データを提供していただきました。深く感謝いたします。京都大学大学院農学研究科の上野正博博士、京都大学大学院農学研究科附属水産実験所の石原正三博士には、野外の調査及びライカの飼育に際して全面的に支援していただきました。京都大学大学院農学研究科附属水産実験所の皆様には様々な面でご支援いただきました。感謝いたします。本研究の一部は、文部省科学研究費基盤研究A（08556031）で行ったことを記し、謝意を表します。

文献

1) 梶元啓, 大久保久直, 板野英彰, 3.ヒラメ、「テレメトリによる水生動物の行動解析」(源田秀男編), 恒星社厚生閣, 東京, 1990, pp.31-40.
2) 梶田秀男, 余居元, 藤村哲哉, 3.サケ, 「テレメトリによる水生動物の行動解析」(源田秀男編), 恒星社厚生閣, 東京, 1990, pp.41-54.
4) 北川貴士, 高橋則之, 板本亘, 荒井啓: 「琵琶湖水生生物学におけるピカソオフマナマスの回遊測定, 海洋理工学会誌, 2, 91-96 (1996).
15) 梶元啓, 柏, 小久保直之, 大久保久直, 魚の行動生産, 新藻水報, 7-9, 22 (1980).