和歌山県串本におけるメジナの年齢と成長

前田充穂,木村清志,中坊徹次

（2001年11月29日受付，2002年6月3日受理）

1京都大学大学院農学研究科，2三重大学水産実験所，3京都大学総合博物館

Age and growth of *Girella punctata* in Kushimoto, Wakayama Prefecture, Japan

MITSUHO MAEDA, SEISHI KIMURA AND TETSUJI NAKABO

1Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606-8502, 2Fisheries Research Laboratory, Mie University, Shima, Mie 517-0703, 3The Kyoto University Museum, Kyoto, Kyoto 606-8501, Japan

Age and growth of *Girella punctata* were estimated by analyzing the ring marks on scales taken from specimens collected from Kushimoto, Wakayama Prefecture, Japan. Examination of marginal increments of scales showed that ring marks were formed once a year, from February to April. The relationships between fork length (FL in mm) and scale radius (R in mm) were shown by separate equations for each sex: FL = 26.1 R + 22.1 (for males); FL = 24.8 R + 29.3 (for females). In addition, von Bertalanffy’s growth equations for fork length (L) and weight (W) at all age (t) were as follows: L = 380 (1 - exp (-0.244 (t + 0.887))), W = 1160 (1 - exp (-0.244 (t + 0.887))). No sexual differences were found in the growth of *G. punctata*. It was also estimated from the gonadosomatic index analysis that the species mainly spawn in April.

キーワード：メジナ，鰭，年齢，成長，産卵期

日本の沿岸域。特に岩礁域に生息する魚類の資源生態学的研究は、多くの魚種においてその採集が困難である故に、ほとんどされていないのが実状である。礁魚の資源量増を知ることは、その有効的資源利用を考える上で非常に重要である。特に、それらの年齢、成長、成熟に関する知見は資源量増を知るための基礎的な知見である。

礁魚の代表格の一つに挙げられるメジナ *Girella punctata* は、我が国では日本海側では新潟県から九州北西部まで、太平洋側では房総半島から九州南部までに生息し、さらに朝鮮半島南部、準州島、台湾そして中国福建省の沿岸域に生息していることが知られている。1）本種は一本釣や刺釣、定置網などの漁業対象魚種として非常に重要であるほか、遊漁の対象魚としても非常に人気が高い。本種には、期内発生や仔魚の形態、2）稚魚の同定、3）仔稚魚や幼魚の生態や成長4）～6）などの報告があり、初期生活史に関する知見は多く見られる。ところが、本種の成魚に関する資源生態学的研究は非常に少なく、年齢成魚の年齢形成時期について吉原ら、11）年齢と成長の報告に関して水口ら、12）成熟に関して水江・三上13）の報告があるだけである。

本研究は黒潮流域沿岸域に位置する和歌山県の串本付近においてメジナの年齢と成長を解明することを目的として、漁獲魚類の年齢、成長、成熟は同種でも生息する海域によって異なることが、他魚種のこれまでの研究で知られている。14）黒潮の影響を強く受ける南日本太平洋側の沿岸域は、日本列島で本種の主要な分布域になっている。一方、水江ら12，13）の報告は長崎県、佐世保におけるものである。そこで、水江らの佐世保からの報告12）と本研究における本報告を比較することにより、本種のより一般的な資源生態学の知見を明らかにした。

材料と方法

本研究に用いた標本の大半は1999年1月から2000年12月までの期間に潮岬や紀伊大島の漁港を中心とした和歌山県串本の漁港，および漁港で釣りによって

* Tel：81-3-3244-4417，Fax：81-3-3244-7003，Email：mitsuho@nissui.co.jp
* 現所属：日本水産株式会社（Nippon Suisan Kaisha，Ltd.，Tokyo 100-8686，Japan）
採集した（Fig. 1）。また，一部は，周辺海域での定置網や刺網で漁獲されたものを用いた（Table 1）。標本の総個体数は367個体，尾叉長範囲は109〜420 mmであった。

採集した標本は，全長，尾叉長，標準体長，体重，生殖腺重量を測定した。年齢形質として鱗を摘出し，水洗後風乾し，保存した。性別別は生殖腺の目視および生殖腺組織の一部を摘出しスライドグラス上で押しぼり顕微鏡下で150倍に拡大し，卵母細胞の有無によって行った。

年齢を定める鱗の水洗らびに，左側胸胸先端部の数枚を用いた。採取した鱗は10％水酸化カルシウム溶液で汚れを落とし，2枚のスライドグラスに挟んで観察を行った。鱗は万能投影機により，透過光線で20倍に拡大し2回以上観察し，輪紋径および鱗径を測定した。輪紋の計測は鱗の焦点と被覆部前縁角を結んだ直線を軸とし，焦点から軸と各輪紋との交点までの距離を輪紋径（r1, r2, r3, …, r8）と，焦点と被覆部前縁角との直線距離を鱗径（R）とした（Fig. 2）。各個体の輪紋径や鱗径は，計測した2枚以上の鱗の平均値で代表させた。なお，検討は全個体について行ったが，輪紋が読み取る可能であったのは341個体であった。輪紋形成期は鱗面に輪紋が2輪から4輪観察できた個体群の鱗の縦辺成長率（MGI）の平均値の経月変化に基づいて推

Table 1. Collecting data of specimens from Kushimoto, Wakayama Prefecture

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Date of catch</th>
<th>Gear used</th>
<th>No. of specimens</th>
<th>Fork length in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Range</td>
</tr>
<tr>
<td>1</td>
<td>Jan. 13〜14, 1999</td>
<td>Angling gear</td>
<td>6</td>
<td>245〜350</td>
</tr>
<tr>
<td>2</td>
<td>Feb. 23〜24</td>
<td>Angling gear</td>
<td>6</td>
<td>253〜274</td>
</tr>
<tr>
<td>3</td>
<td>Mar. 2〜9</td>
<td>Angling gear</td>
<td>23</td>
<td>150〜341</td>
</tr>
<tr>
<td>4</td>
<td>Apr. 12〜18</td>
<td>Angling gear</td>
<td>13</td>
<td>149〜338</td>
</tr>
<tr>
<td>5</td>
<td>May 6〜12</td>
<td>Angling gear</td>
<td>11</td>
<td>146〜395</td>
</tr>
<tr>
<td>6</td>
<td>June 7〜13</td>
<td>Angling gear</td>
<td>15</td>
<td>168〜420</td>
</tr>
<tr>
<td>7</td>
<td>July 8〜11</td>
<td>Angling gear</td>
<td>17</td>
<td>164〜431</td>
</tr>
<tr>
<td>8</td>
<td>Sep. 6〜11</td>
<td>Angling gear</td>
<td>13</td>
<td>178〜329</td>
</tr>
<tr>
<td>9</td>
<td>Oct. 15〜17</td>
<td>Angling gear</td>
<td>16</td>
<td>158〜208</td>
</tr>
<tr>
<td>10</td>
<td>Nov. 7〜12</td>
<td>Angling gear</td>
<td>14</td>
<td>109〜298</td>
</tr>
<tr>
<td>11</td>
<td>Dec.11〜16</td>
<td>Angling gear</td>
<td>44</td>
<td>170〜396</td>
</tr>
<tr>
<td>12</td>
<td>Jan. 18〜22, 2000</td>
<td>Angling gear</td>
<td>21</td>
<td>235〜420</td>
</tr>
<tr>
<td>13</td>
<td>Feb. 21〜28</td>
<td>Angling gear, Gill net</td>
<td>18</td>
<td>262〜380</td>
</tr>
<tr>
<td>14</td>
<td>Mar. 7〜14</td>
<td>Angling gear, Gill net, Set net</td>
<td>33</td>
<td>254〜413</td>
</tr>
<tr>
<td>15</td>
<td>Apr. 17〜21</td>
<td>Angling gear, Gill net, Set net</td>
<td>17</td>
<td>254〜386</td>
</tr>
<tr>
<td>16</td>
<td>May 11〜17</td>
<td>Angling gear</td>
<td>6</td>
<td>272〜356</td>
</tr>
<tr>
<td>17</td>
<td>June 14</td>
<td>Angling gear</td>
<td>1</td>
<td>307</td>
</tr>
<tr>
<td>18</td>
<td>July 19</td>
<td>Angling gear</td>
<td>2</td>
<td>123〜144</td>
</tr>
<tr>
<td>19</td>
<td>Aug. 25〜30</td>
<td>Angling gear</td>
<td>4</td>
<td>151〜244</td>
</tr>
<tr>
<td>20</td>
<td>Sep. 18〜19</td>
<td>Angling gear</td>
<td>19</td>
<td>110〜296</td>
</tr>
<tr>
<td>21</td>
<td>Oct. 23〜25</td>
<td>Angling gear</td>
<td>13</td>
<td>128〜318</td>
</tr>
<tr>
<td>22</td>
<td>Nov. 16〜22</td>
<td>Angling gear</td>
<td>45</td>
<td>115〜298</td>
</tr>
<tr>
<td>23</td>
<td>Dec.11〜20</td>
<td>Angling gear</td>
<td>10</td>
<td>268〜326</td>
</tr>
</tbody>
</table>

Total | 367 | 109〜420 |
定した。

\[MGI = \frac{(R - r_n)}{(r_n - r_{n-1})} \]

\(R \): 麟径, mm, \(r_n \): 最外輪紋の輪径, mm

尾叉長 - 全長・標準体長・体重・鱗径関係の回帰直線を求め、雌雄の回帰直線間有意差があるかどうかを調べた。鱗径 - 尾叉長の回帰直線を求め、各輪紋形成時の輪径毎に代入することによって各輪紋形成時の尾叉長を逆算した。各輪紋形成時の尾叉長より Walford15の定差図を作成し von Bertalanfly の成長式16への適合を試みた。

生殖腺指数 (GSI) は、以下の式によって求めた。

\[GSI = \frac{GW}{W} \times 10^6 \]

\(GW \): 生殖腺重量, g, \(W \): 体重, g

尾叉長と生殖腺指数の散布図より最小成熟尾叉長の推定を行い、さらに生殖腺指数値の周年変化より産卵期の推定を行った。

結 果

尾叉長 - 全長・標準体長・体重関係 本種に関する各表示尾叉長間の関係を求めると次のようになった。

尾叉長 (FL, mm) - 全長 (TL, mm) 関係

\[TL = 1.10 FL - 7.78 \quad (r^2 = 0.994, n = 367) \quad (1) \]

尾叉長 (FL, mm) - 標準体長 (SL, mm) 関係

\[SL = 0.851 FL - 3.88 \quad (r^2 = 0.993, n = 367) \quad (2) \]

尾叉長 (FL, mm) - 体重 (W, g) 関係

\[\log W = 2.95 \log FL - 4.55 \quad (r^2 = 0.993, n = 365) \quad (3) \]

この 3 関係を雌雄間で共分散分析で比較した結果、5% 水準で有意差は認められず、単一の相対成長式で表された。

鱗の性状と輪紋形成時期 本種の鱗は筒鱗で、焦点を中心に鱗の被覆面に成長線が馬蹄形に形成され、成長線の粗密によって休止帯と判断することができる輪紋を比較的容易に判別することができた (Fig. 2)。第 1 輪と第 2 輪は、第 3 輪以降に比較して不明瞭である傾向がみられた。輪紋は 10 輪まで確認できたが、このような高齢魚の個体数は少なく、また高齢魚では輪紋が隠れてしまい、輪紋の判読が不確実になることがあると考えられたので、本研究では 6 輪魚までについて成長解析を行った。

縁辺成長率は、1 月に最大値を示し 2 月から減少し始め 4 月に極小値を示し、これより増加しました (Fig. 3)。このような縁辺成長率の縁辺変化から、輪紋は年 1 回、2 月から 4 月に形成され考えられる。

鱗径 - 尾叉長関係と輪紋形成時の計算尾叉長 鱗径 - 尾叉長関係は雌雄の回帰直線を共分散分析で比較した結果、5% 水準で有意ではなかったが、有意な位置の差がみられたため、雌雄別に関係式を求めた (Fig. 4)。

雌：\[FL = 26.1 R + 22.1 \quad (r^2 = 0.956, n = 186) \quad (4) \]

雄：\[FL = 24.8 R + 29.3 \quad (r^2 = 0.936, n = 144) \quad (5) \]
雄雄別、輪紋群別の平均輪径を Table 2 のように示す。Table 2 から、雄雄ともに各輪径が小魚になるほど大きくなり出される反 Lee 現象が、特に第 1、第 2 輪でみられた。しかし、この要因を特定できないため、本研究所では反 Lee 現象に対する補正は行わなかった。

変個体について、各輪径を(4),(5)式に代入し、輪紋形態時の尾叉長を求めた。輪紋形態時の平均尾叉長は各

雄それぞれ、雄で $l_1 = 137$ mm、$l_2 = 191$ mm、$l_3 = 233$
m、$l_4 = 263$ mm、$l_5 = 289$ mm、$l_6 = 308$ mm。雌で l_1
= 144 mm、$l_2 = 193$ mm、$l_3 = 237$ mm、$l_4 = 266$ mm、l_5
= 290 mm、$l_6 = 312$ mm であった。雌雄の計平均尾叉
長に対してt検定を行ったが、5% 水準で有意差が認められなかったため、ここでは雄雄をまとめた全体の平均
値を各輪紋形態時の計算尾叉長の代表値とした。この値は次のようになる。

| L_{n+1} = (7) と、von Bertalanffy の成長式は、
| $L_n = 380(1 - exp(-0.244(n+0.887)))$

両輪形態時の尾叉長}

n：輪紋数

W_n 体重の成長式は(3),(7)式より、

$W_n = 1160(1 - exp(-0.244(n+0.887)))^{2.35}$

で表された。

産卵期の推定 尾叉長と GSI との関係(Fig. 5)から、
雌は尾叉長 280 mm 付近で雄は尾叉長 250 mm 付近で
GSI が急激に増大した。そこで、各魚の生殖周期を検討
するために全個体の GSI の散布を雄雄別に Fig. 6 に示
した。GSI の大きい雌が最も多く見られたのは 4 月で

Table 2. Mean values and standard deviation of ring formation radii in *Girella punctata*

| Male | R_1 | R_2 | R_3 | R_4 | R_5 | R_6
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.02±0.553</td>
<td>6.09±0.820</td>
<td>8.13±0.799</td>
<td>9.26±0.596</td>
<td>9.32±0.555</td>
<td>10.3±0.571</td>
</tr>
<tr>
<td>2</td>
<td>4.25±0.766</td>
<td>6.60±0.906</td>
<td>9.18±0.781</td>
<td>10.1±0.779</td>
<td>11.0±0.872</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.58±0.847</td>
<td>6.50±0.732</td>
<td>10.2±0.779</td>
<td>11.0±0.872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.39±0.812</td>
<td>6.58±0.705</td>
<td>6.09±0.717</td>
<td>9.26±0.596</td>
<td>9.32±0.555</td>
<td>10.3±0.571</td>
</tr>
<tr>
<td>5</td>
<td>4.51±0.679</td>
<td>6.45±0.632</td>
<td>8.03±0.779</td>
<td>9.18±0.781</td>
<td>10.1±0.779</td>
<td>11.0±0.872</td>
</tr>
<tr>
<td>6</td>
<td>4.74±0.637</td>
<td>6.65±0.772</td>
<td>8.03±0.779</td>
<td>9.18±0.781</td>
<td>10.1±0.779</td>
<td>11.0±0.872</td>
</tr>
<tr>
<td>Aver.</td>
<td>4.42±0.781</td>
<td>6.47±0.832</td>
<td>8.08±0.761</td>
<td>9.25±0.667</td>
<td>10.2±0.779</td>
<td>11.0±0.872</td>
</tr>
</tbody>
</table>

| Female | R_1 | R_2 | R_3 | R_4 | R_5 | R_6
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.21±0.479</td>
<td>5.46±0.543</td>
<td>8.42±0.851</td>
<td>9.37±0.683</td>
<td>10.3±0.721</td>
<td>11.4±0.995</td>
</tr>
<tr>
<td>2</td>
<td>3.66±0.571</td>
<td>5.46±0.543</td>
<td>8.42±0.851</td>
<td>9.37±0.683</td>
<td>10.3±0.721</td>
<td>11.4±0.995</td>
</tr>
<tr>
<td>3</td>
<td>4.54±0.718</td>
<td>6.60±0.741</td>
<td>8.05±0.678</td>
<td>9.33±0.675</td>
<td>10.3±0.721</td>
<td>11.4±0.995</td>
</tr>
<tr>
<td>4</td>
<td>4.79±0.754</td>
<td>6.77±0.727</td>
<td>8.12±0.748</td>
<td>9.89±0.905</td>
<td>10.7±0.959</td>
<td>11.4±0.995</td>
</tr>
<tr>
<td>5</td>
<td>4.83±0.854</td>
<td>7.40±0.749</td>
<td>8.79±0.972</td>
<td>9.53±0.667</td>
<td>10.5±0.779</td>
<td>11.4±0.995</td>
</tr>
<tr>
<td>6</td>
<td>5.56±0.907</td>
<td>6.58±0.864</td>
<td>8.35±0.761</td>
<td>9.53±0.667</td>
<td>10.5±0.779</td>
<td>11.4±0.995</td>
</tr>
<tr>
<td>Aver.</td>
<td>4.60±0.853</td>
<td>6.58±0.864</td>
<td>8.35±0.761</td>
<td>9.53±0.667</td>
<td>10.5±0.779</td>
<td>11.4±0.995</td>
</tr>
</tbody>
</table>
メジナの年齢と成長

Fig. 5. Relationships between gonadosomatic index (GW/W X 10^3; GW, gonad weight in g; W, weight in g) and fork length of (a) male and (b) female of Girella punctata.

Fig. 6. Seasonal change of gonadosomatic index from January to December (1999~2000), (a) male, (b) female.

Fig. 7. Seasonal change in water temperature at Kushimoto, Wakayama Prefecture (solid squares) and Sasebo, Nagasaki Prefecture (open circles).

あり、GSI の大きい雌が最も多く見られたのは 3 月から 4 月であった。これらのことから、本種の産卵期は 4 月と推定された。この産卵期は鱗の輪紋形成期（2 月から 4 月）とほぼ一致することから、ここで推定した成長式は、ほぼ満年齢の尾叉長や体重を表している。なお、雄が尾叉長 280 mm、雄が尾叉長 250 mm に達する最小年齢は 3 歳であった。したがって、最小成熟年齢は 3 歳となった。

考察

産卵期、最小成熟尾叉長、最小成熟年齢と鱗の輪紋形成 本種の産卵期は 4 月であると推定された（Fig. 6）。Okuno (1992) は、和歌山県白浜における本種の産卵期のピークが 3 月から 4 月にかけてであるとし、本研究はこれとよく一致している。また、Fig. 5 より本種の最小成熟尾叉長、雌が 280 mm、雄が 250 mm であると推定でき、雌は雄よりも大きい尾叉長で産卵に加わっているようである。しかし、これらのことは、GSI みから推察したことであるとの間であるとは言えない。これ以上の厳密な考察には生殖腺を組織学的に観察し、GSI と生殖腺成熟度の関係を明らかにする必要がある。

本種の鱗における輪紋形成期は 2 月から 4 月であった（Fig. 3）。また本種の産卵期は 4 月であると推定された。したがって、和歌山県本種では、輪紋形成期と産卵期がほぼ一致していると考えられた。また、長崎県佐世保では、水江ら (1992) よりと、深海成長期が極小になった月、雄では 5 月で、雌では 4 月から 5 月にかけてで、本種の産卵期は 5 月であるとしている。このことから、佐世保でも、輪紋形成期は産卵期とほぼ一致する。安田ら (1993) は年齢形質の輪紋密度を決定する要因として、飼料や水中の栄養環境等を示し、成長とか成熟のような生理条条件下の方がより重要だとしている。鈴木・木村 (1993) も鱗の輪紋形成の要因として産卵を挙げている。したがって、佐世保と本種のそれぞれにおいて輪紋形成期と産卵期がほぼ一致したが、産卵期が本種の明暗な鱗における輪紋形成の重要な要因の一つになりうるという点を示唆している。さらに、最小成熟年齢が 3 月であると推察され、各成熟前に形成された第 1 輪や第 2 輪は第 3 輪以降の輪紋に比べて不明瞭であったという事実からも、産卵が明暗な鱗の輪紋形成に大きく関与していることを支持している。

上述したように本種では 4 月、佐世保では 5 月と産卵期に時期的な相違がみられる。この相違の要因として水温が示唆される。本種と佐世保海域にあたる大崎観測所における水温の年変化（1999~2000 年の平均値）
Fig. 7 に示した。串本の水温は和歌山県水産総合技術センター水産試験場からのもので、潮岬の東側と西側の2地点において測定された表面水温の平均値を算出したものである。佐世保の水温は長崎県北水産業普及指導センターからのもので、大崎観測点において水深1 m、3 mそして底における水温の平均値を算出したものである。本種の佐世保における報告は1999年のものであるが、1960年代の佐世保における水温データを入力することができなかった。しかし、Fig. 7 で見られる両地域間における水温差が、1999–2000年の串本と1960年代の佐世保間に存在することが充分に予想される。串本と佐世保では冬季から春期にかけての水温上昇度に約1ヶ月のずれがある。そこで、山口は、マダイの各地の産卵期と水温の関係を比較し、水温上昇の早い海域ほど産卵期が早い傾向がみられるとしている。さらに山口は、潮岬において水温が著しく変動する満潮時における長期の水温記録を用いて、大崎観測点における水温が挙げられるとされている。本種の産卵水温に関しての知見はないが、本種の産卵水温が17℃から18℃であると予想すると、水温がその付近に達して初めて本種の産卵が引き起こされることが推察できる。17℃から18℃をこえる水温に達するのか、串本では3月中旬から4月であり佐世保では4月下旬から5月にかけてである。したがって両地域における産卵期における輪倍形成ならびに産卵期間における1ヶ月のずれは水温上昇期の違いに起因していることが示唆される。しかし、今後の研究でメジナの産卵期間中の水温を確かめる必要がある。

成長比較 串本における満年齢時の尾叉長は、$L_1 = 140$ mm, $L_2 = 191$ mm, $L_3 = 234$ mm, $L_4 = 264$ mm, $L_5 = 289$ mm, $L_6 = 309$ mm と算出された。一方、佐世保では、水江らにより、雌で、$L_1 = 165.2$ mm, $L_2 = 156.6$ mm, $L_3 = 201.9$ mm, $L_4 = 236.1$ mm, $L_5 = 264.3$ mm, $L_6 = 284.1$ mm、雄で、$L_1 = 88.5$ mm, $L_2 = 138.4$ mm, $L_3 = 181.2$ mm, $L_4 = 218.5$ mm, $L_5 = 246.2$ mm, $L_6 = 270.1$ mm となる。両地域の成長を比較すると、佐世保に関して串本の方が良好な成長を示している。なお、水江らの報告では雄の成長が雌の成長をかなり上回っているが、本研究では、雌雄間の有意な成長差は認められなかった。このことに関する厳密な解析は今後の課題であろう。

両地域間における成長差の要因について、串本と佐世保の水温差が示唆される。このことを考えるとあたって串本と佐世保の結果についてWalfordの成長推移図によって成長度を求めた（Fig. 8）。求めた直線式は、次に示される通りである。なお、佐世保のWalford式については、水江らのデータを用いて計算した。

串本

$L_{n+1} = 0.784 L_n + 82.2 (r^2 = 0.990) \quad L_w ; 380$ mm

佐世保 雄

$L_{n+1} = 0.801 L_n + 74.2 (r^2 = 0.989) \quad L_w ; 380$ mm

佐世保 雌

$L_{n+1} = 0.832 L_n + 65.7 (r^2 = 0.999) \quad L_w ; 388$ mm

Walford式の傾斜値の値は、串本の値に比べて佐世保の、佐世保雌の値が大きくなっている。このことから、2年目の成長度は串本の方が悪くなることより、計算尾叉長の成長度から1年目の成長度に原因していると示唆される。満1歳時の尾叉長について、本研究では尾叉長140 mm、水江らでは、雌155.2 mm、雄85.0 mm と推定した。このように、満1歳時の尾叉長の推定値には大きな差がみられ、この原因としては、本調査の個体差や地域差が考えられる。また、水江らの標準は測定で採集されたものを或いは商標漁業の標本を用いているため、満1歳時の尾叉長が過小に推定されるような標本の偏りは考えにくい。矢野らや高橋は、マダイの当歳魚の成長は、平均水温が高い年には良く

Fig. 8. Walford’s growth transformation of calculated fork length. (a) Kushimoto, (b) male and (c) female in Sasebo.
るとしている。Fig. 7 より冬季の水温は、本種の方が高く、これによって冬季の当歳魚の成長に差が生じ、本種の当歳魚の方が良好な成長を示したとも考えられ、計算尾叉長の地域間による差が生じたと考えられる。

本研究では極限尾叉長を 380 mm と算出した。この値は、本種が最大全長 500 mm（換算尾叉長 462 mm）くらいにまで達することが知られていることや、本研究標本の最大尾叉長は 420 mm であったことから、これらに比べるといくぶん過小である。しかし、本研究材料では尾叉長 380 mm 以上の個体がわずかに 8 個体であるということや、このような高齢魚は鱗の脱尾が不明確で読みとりが不正確になるため、7 輪魚以上を算出解析から除外することを考慮すると、平均的な極限尾叉長として 380 mm は妥当な値であるといえる。また、水江らは、雄の極限尾叉長が 380 mm、雌の極限尾叉長が 388 mm と算出し、両研究で得られた極限尾叉長値間に大きな差がない、本種の平均的な極限尾叉長値は 380-390 mm であろうと考えられる。

謝辞
本研究を行うにあたって標本の採集に御協力いただいた故本誌藤信氏をはじめとした経済本会の一員、釣りによる標本の採集に便宜をはかっていただいた内田総社博士を始めとした本海中央公園センター、本研究に関する様々な情報を提供して下さった和歌山県川富水産総合技術センター水産試験場ならびに長崎県北水産業普及指導センター、そして週刊釣りサンダー小西英人氏ならびに高崎松樹氏に感謝の意を表する。

文献
2) 水戸 藤, メジナの卵発生と仔魚期. 魚類学雑誌 1957; VI-4/5/6; 105-108.
5) 小林英雄, 五十嵐 優, 北海道流動便近におけるメジナ Girella punctata Gray の幼魚に就いて, 北水産学会報 1961; XII, 2: 121-127.
6) 森 主一, メジナ幼魚の社会構造一観察とならび一, 日本生態学会誌 1956; 5: 145-150.
8) 吉原喜正, 藤原久啓, 池田重春, 田中崇明, 伊豆半島沿岸域における標識メジナ種仔魚の遊泳と成長について, 水産増殖 1988; 46: 177-182.
10) 吉原喜正, 池本尚美, 藤井紘雄, 伊豆半島沿岸域におけるメジナ幼魚種の体長・体重関係について, 水産増殖 1999; 47: 343-348.
14) 落合 明, 田中 克, 「魚類学 (下)」恒星社厚生閣, 東京, 1986.
17) 田中昌一,「水産資源学総論, 増補版第1版」恒星社厚生閣, 東京, 1961; 156-171.
18) 安田秀明, 魚類の骨, 耳石, 筋骨格に隠される年輪の生成に関する要因の批判的研究, 日本誌 1941; 10: 7-10.
20) 山口正男, 産卵期間, 「メジナ種の基礎と実際」恒星社厚生閣, 東京, 1978; 28-34.
21) 原田隆男, 海産魚種魚卵の成熟と採卵一その基礎と応用 (日本水産学会講) 恒星社厚生閣, 東京, 1974; 66-75.
22) 矢野 実, 井上 明, 国行一正, 高森茂樹, 仁科重友, 新興場内海産便におけるマグダイ幼魚期の分布と育成, 南西水研報 1969; 1: 75-85.
23) 高場 耕, マグダイの年成長量の年変動, 日本誌 1997; 63: 563-569.