Original

Influence of Hepatectomy on Body Temperature Change in Rats

Amane Otaki*1, Satoko Abe1, Kenji Mishima2, Kazuhiko Soejima1 and Kazuhito Sano1

Abstract: Abdominal surgery, especially liver resection and transplantation, increases body temperature during and after surgery, but the precise mechanism(s) underlying this effect are not well understood. The present study thus sought to investigate this phenomenon using an experimental rat model. Specific pathogen-free male Sprague-Dawley rats, 5 weeks of age, underwent a two-thirds partial hepatectomy (PH), one-third splenectomy, or left kidney resection, and then rectal temperature was measured for 5 consecutive days after surgery. Rectal temperature increased in PH rats to a peak on day 4, but no change in temperature was detected after splenectomy and kidney resection. In the second part of the study, we examined the influence of gadolinium chloride and interleukin-1β monoclonal antibody (IL-1β mAb) on the increase in rectal temperature following PH. Treatment of rats with 20 mg/kg gadolinium chloride or 200 µg IL-1β mAb inhibited the PH-induced increase in rectal temperature and decrease in IL-1β and prostaglandin E2, which act as pyrogens to change the thermoregulatory set point in the hypothalamus. These results suggest that abdominal surgery, especially liver resection, caused an increase in endogenous pyrogen production that results in increased body temperature.

Key words: body temperature, hepatectomy, IL-1β, prostaglandin E2, Kupffer cell

Introduction

As warm-blooded animals, human organs are designed to operate efficiently at a body temperature around 37°C1), with natural variations throughout the day remaining within 1°C. The body uses a complex mechanism for thermoregulation and generates heat through the process of metabolism, which generates the energy essential to maintain biological activities. Decreased body temperature after surgery is a well-known outcome in many patients2,3), because surgery is an invasive process that can induce a shock effect to the body4,5). In addition, the temperature of the body at rest is slightly lower than while active and most surgical suites are air-conditioned and tend to be very cold3). Surgery also causes blood loss, which will further decrease body temperature. In some cases, surgery may be performed to remove an organ or organ system from the body. Therefore, a decrease in postoperative body temperature is caused

1) Showa University Graduate School of Nursing and Rehabilitation Sciences, 1865 Touka-Ichiba, Midori-Ku, Yokohama 226-8555, Japan.
2) Department of Oral Pathology, Showa University School of Dentistry.
* To whom corresponding should be addressed.
by a combination of these factors as the body struggles to maintain temperature, while healing surgical wounds. Furthermore, body temperature after surgery may decrease in response to medication administered both before and during procedures\(^3,6\), while the lack of activity when the patient is on the operating table will slow metabolism and lower heat generation within the body\(^5\). After surgery, a patient’s body temperature is maintained with heated blankets because low postoperative body temperature can cause complications if not corrected promptly. Within a few hours, the individual usually regains the ability to self-regulate body temperature as the effects of anesthesia wear off. Abdominal surgeries, especially liver resection and transplantation, can increase body temperature during surgery. It is reported that liver resection causes the activation of Kupffer cells to produce IL-1\(^7\), which can affect changes in body temperature\(^8\), suggesting that IL-1 from Kupffer cells increases the body temperature of patients. However, there is no direct evidence that IL-1 from Kupffer cells causes the increase in body temperature. Therefore, the aim of the present study was to examine the possible mechanisms by which abdominal surgery increases body temperature using an experimental rat model.

Materials and methods

Animals

Specific pathogen-free male Sprague-Dawley rats, 5 weeks of age, were purchased from Charles River Laboratories Japan, Inc. (Atsugi, Kanagawa, Japan) and maintained in our animal facility under a controlled environment \((25 \pm 2^\circ C, 55 \pm 5\%\) humidity, and 12-h dark / light cycle\). All experimental procedures were approved by the Animal Care and Use Committee of Showa University (approval no.: 54001).

Surgical Operation

Two-thirds partial hepatectomy (PH) was performed according to the methods described by Higgins and Anderson\(^9\). Briefly, rats were anesthetized by intraperitoneal injection of pentobarbital \((30 \text{ mg/kg}; \text{Kyoritsu Seiyaku Corp., Tokyo, Japan})\). After the abdominal hair was shaved and the abdominal skin was sterilized with 70\% ethanol and povidone iodine \((\text{Meiji Seika Co., Ltd., Tokyo, Japan})\), an incision of approximately 3 cm was made into the abdominal wall and two-thirds of the liver was removed. Afterward, each PH rat received three daily intraperitoneal injections of cefazolin sodium hydrate \((40 \text{ mg/kg}; \text{Fujisawa Pharmaceutical Co., Ltd., Tokyo, Japan})\) to prevent postoperative bacterial infection. To prepare the partial splenectomy and kidney resection rat models, rats were pre-treated in a similar manner and then either approximately one-third of the spleen or the left kidney was resected. Rats subjected to abdominal wall treatment only (hair removal and incision) were used as sham-operated controls. Postoperatively, these rats also received three daily intraperitoneal injections of cefazolin sodium hydrate \((40 \text{ mg/kg}; \text{Fujisawa Pharmaceutical Co., Ltd.})\) to prevent bacterial infection.

Treatment of rats with agents

PH rats received either 200 \(\mu\)g of interleukin-1\(\beta\) monoclonal antibody (IL-1\(\beta\) mAb) or
Changes in Body Temperature by Hepatectomy

20 mg/kg gadolinium chloride intravenously 4 days after surgery. The dose of gadolinium chloride used in this study showed no toxicological effects when injected intravenously into rats10, 11. Both agents were purchased from R & D Systems, Inc. (Minneapolis, MN, USA) as preservative-free reagents.

Measurement of rectal temperature

Rectal temperature was measured using a thermal probe connected to a digital thermometer (Tateyama Kagaku Industry Co., Ltd., Toyama, Japan). Rats were anesthetized with an intraperitoneal injection of pentobarbital (30 mg/kg; Kyoritsu Seiyaku Corp.). A thermistor probe (Tateyama Kagaku Industry Co., Ltd.) was then inserted about 2 cm into the rectal and left in place for 1 min to record the temperature.

Assay for interleukin (IL)-1β and prostaglandin (PG) E2

Serum IL-1β and PGE2 levels were measured using commercially available enzyme-linked immunosorbent assay (ELISA) kits according to the manufacturer’s recommendations. The ELISA test kits for IL-1β were purchased from R & D Systems and those for PGE2 from Cayman Chemical Company (Ann Arbor, MI, USA). The minimum detectable levels of these ELISA kits were 5.0 pg/ml for IL-1β and 7.8 pg/ml for PGE2.

Statistical analysis

All data are expressed as the mean ± SE of five rats. Significant differences between control and experimental groups were identified by analysis of variance followed by the Bonferroni test. A probability (P) value < 0.05 was considered statistically significant.

Results

Influence of abdominal surgery on core body temperature

Rats that underwent PH underwent a rectal temperature measurement once a day (from 11:00 to 12:00) for 5 consecutive days. As shown in Fig. 1, the rectal temperature of PH rats was significantly increased on day 1, plateaued by day 4, and declined thereafter. To then examine whether splenectomy and kidney resection also caused an increase in body temperature, the rectal temperature of rats in the splenectomy and kidney resection groups was measured 4 days after surgery. As shown in Fig. 2, there were no significant differences in rectal temperature between rats in the splenectomy (36.4 ± 0.10°C) and kidney resection (36.4 ± 0.08°C) groups and controls (36.0 ± 0.31°C).

Influence of gadolinium chloride and IL-1β mAb treatment on rectal temperature of PH rats

We next examined whether gadolinium chloride or IL-1β mAb treatment suppressed the increase in rectal temperature following PH. Preliminary experiments confirmed that intravenous injection of either gadolinium chloride or IL-1β mAb into non-treated rats caused no changes in rectal temperature (data not shown). Rats in the PH group received an intravenous injection
of gadolinium chloride 4 days after surgery and rectal temperature was measured 2 h later, and as shown in Fig. 3A, the injected rats showed a significantly suppressed increase in rectal temperature (37.1 ± 0.11°C) induced by PH, compared with non-treated controls (36.0 ± 0.32°C). Similar experiments to examine the influence of IL-1β mAb injection on PH rats showed an inhibition of the PH-induced increase in rectal temperature (37.3 ± 0.06°C) compared to sham-operated controls (36.0 ± 0.32°C) (Fig. 3B).

Influence of gadolinium chloride or IL-1β mAb treatment on PGE2 and IL-1β levels in PH rats

The third set of experiments was designed to examine the influence of PH on the production of endogenous pyrogens, which increase the core body temperature of mammals. Furthermore, we also examined the influence of pyrogen suppression on changes to core body temperature. Briefly, serum was obtained from PH rats before and after treatment with gadolinium chloride or IL-1β mAb, and then assayed for both PGE2 and IL-1β by ELISA. As shown in Fig. 4A & B, gadolinium chloride treatment significantly decreased serum levels of both PGE2 (314.10 ± 22.57 pg/ml) and IL-1β (13.00 ± 2.52 pg/ml), which were increased by PH (PGE2: 480.77 ± 25.80 pg/ml; IL-1β: 40.45 ± 9.51 pg/ml). The data in Fig. 5 (A & B) also showed that IL-1β mAb treatment decreased serum PGE2 levels (351.00 ± 27.62 pg/ml), which were increased by PH (469.20 ± 30.16 pg/ml). On the other hand, kidney resection did not influence serum pyrogen levels (Fig. 6), with PGE2 and IL-1β levels in serum obtained from rats 4 days after kidney resection (PGE2: 413.50 ± 31.89 pg/ml; IL-1β: 6.93 ± 3.58 pg/ml) nearly identical to those obtained before surgery (PGE2: 416.70 ± 12.82 pg/ml; IL-1β: 6.90 ± 3.47 pg/ml).
Discussion

Surgical procedures are well known to lower core body temperature by 0.5–1.5°C, owing in part to cold operating rooms, decreased muscular activity, and restricted cutaneous vasodilation\(^1\), \(^6\). Although abdominal surgery is known to cause transient increases in body temperature, the mechanisms that drive these fluctuations in body temperature are not well
The aim of the present study was therefore to identify possible mechanisms through which abdominal surgery increases body temperature using experimental rat models.

The present results clearly showed that PH, but not splenectomy or kidney resection, increased rectal temperature. The mammalian liver reportedly possesses the unique ability to regenerate...
to nearly its original size after PH or injury12, 13. The proliferative signals responsible for liver regeneration are conveyed by a complex network of cytokines and growth factors, which induce hepatocytes to proliferate12. In a study to identify cell types and mediators that stimulate hepatocyte proliferation, Goss et al13 showed that Kupffer cells, resident macrophages in the liver, obtained from PH rats were significantly activated relative to macrophages obtained from the spleen, peritoneum, and airways. This group also observed that Kupffer cells from PH rats produced much higher levels of both IL-1 and PGE2 in response to lipopolysaccharide stimulation \textit{in vitro}13.

Increases in body temperature induce changes to the thermoregulatory set point in the hypothalamus, via the direct action of many types of mediators, which include IL-1\textbeta, tumor necrosis factor, and IL-68, 14. These endogenous pyrogens trigger the synthesis and release of other mediators, most notably PGE2, in the preoptic nuclei of the anterior hypothalamus15, 16 and in vascular endothelial cells, among other regions1. Preoptic neurons bearing E-prostanoid receptors alter their intrinsic firing rate in response to PGE2 stimulation, evoking an elevation in the thermoregulatory set point1. Together with these reports, the present data might indicate that PH in rats activates Kupffer cells to produce IL-1\textbeta and PGE2, which, in turn, raise the thermoregulatory set point in the hypothalamus and subsequently, the body temperature.

We then asked how exactly the PH procedure, but not splenectomy or kidney resection, could increase body temperature. To do this, we first examined the influence of inhibiting Kupffer cell activation on body temperature fluctuations using gadolinium chloride, which can inhibit calcium ion uptake and calcium-dependent cellular responses such as nuclear factor kappa-B (NF-\textkappaB) activation responsible for protein production, including IL-1 and PGE210, 11, 17. The present data clearly showed that gadolinium chloride treatment prevented the PH-induced increases in body temperature in rats and also suppressed the serum levels of both PGE2 and IL-1\textbeta, which play essential roles in modulating body temperature and which were raised by PH. Furthermore, IL-1\textbeta mAb treatment of PH rats inhibited the increase in both body temperature and PGE2 production. These results strongly suggest that PH activated Kupffer cells, and that these cells, in turn, increased the production of the endogenous pyrogens IL-1\textbeta and PGE2 to induce a net increase in body temperature. This speculation is supported by the observation that kidney resection did not cause changes to serum levels of the endogenous pyrogens IL-1\textbeta and PGE2.

In conclusion, the increase in body temperature induced by PH, but not by splenectomy and kidney resection, could be attributed, at least in part, to Kupffer cell activation.

\textbf{Conflict of interest}

The authors declare no conflict of interest regarding this work.

\textbf{References}

[Received November 8, 2014 : Accepted December 16, 2014]