日本原子力学会和文論文誌
Online ISSN : 2186-2931
Print ISSN : 1347-2879
ISSN-L : 1347-2879
速報
燃料デブリ分布と再臨界予測における多相多成分詳細流体解析手法と連続エネルギーモンテカルロコードとの連成解析
山下 晋 多田 健一吉田 啓之須山 賢也
著者情報
ジャーナル フリー

2018 年 17 巻 3-4 号 p. 99-105

詳細
抄録

 To reveal the melting behaviors of core internals mechanistically and to reduce the uncertainties of existing severe accident analysis codes, a numerical simulation code for melt relocation and accumulation behaviors based on computational fluid dynamics named JUPITER has been developed by JAEA. In this paper, we performed a simulation of the accumulation and spreading of a melt to the pedestal region of a typical BWR containment vessel by JUPITER to consider a method for estimating the fuel debris composition. We performed recriticality analysis by the continuous energy neutron transport Monte Carlo code MVP using detailed fuel debris composition data obtained by JUPITER to evaluate recriticality for fuel debris. It was revealed that JUPITER has the potential to obtain a complicated fuel debris distribution mechanistically. Also, in effective multiplication factor analyses, we investigated the effect of parameters (uranium enrichment, water content ratio and partitioning resolution in MVP analysis) on the effective multiplication factor. It was also revealed that the partitioning resolution is one of the most important factors in JUPITER-MVP coupled analysis, and an appropriate partitioning according to the inhomogeneity of the fuel debris distribution obtained by JUPITER will be very important.

著者関連情報
© 2018 一般社団法人 日本原子力学会
次の記事
feedback
Top