Transactions of the Atomic Energy Society of Japan
Online ISSN : 2186-2931
Print ISSN : 1347-2879
ISSN-L : 1347-2879

This article has now been updated. Please use the final version.

Effect of Seawater on Heat Transfer without Boiling in Internally Heated Annulus
Shinichiro UESAWAWei LIULifang JIAOTaku NAGATAKEKazuyuki TAKASEMitsuhiko SHIBATAHiroyuki YOSHIDA
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: J15.024

Details
Abstract

 Seawater was injected into the reactors during the accident at TEPCO’s Fukushima Daiichi NPS. However, the effects of the seawater on the cooling performance of the fuel rods and fuel debris are not clear. As possible effects, the change in the physical properties of the coolant and the sea salt deposition on a heat transfer surface and in the coolant are considered. We conducted thermal-hydraulic experiments using an internally heated annulus to determine the effects of seawater under conditions without boiling. The same experiments for water and sodium chloride (NaCl) solution were also conducted for the purpose of comparison with the artificial seawater. In these experiments, considering the physical properties of the artificial seawater, the thermal-hydraulic behaviors of the artificial seawater under forced convection (Re>2300 [-]) was estimated from the Dittus-Boelter correlation although sea salt was deposited in the fluid. According to the results of particle image velocimetry (PIV), the velocity distribution in the artificial seawater was NOT different from that in the water and the NaCl solution. For a mixed convection regime, the Nusselt number of the artificial seawater was obtained from the correlation of the Grasholf number, Reynolds number and Prandtl number, as well as those for the water and the NaCl solution. Therefore, considering the physical properties of the artificial seawater, the thermal-hydraulic behavior of the seawater in single-phase flow can be estimated from the conventional thermal-hydraulic correlations for a single-phase flow.

Content from these authors
© 2016 Atomic Energy Society of Japan
feedback
Top