TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN
Online ISSN : 1884-0485
ISSN-L : 1884-0485

This article has now been updated. Please use the final version.

General Characteristics of Free-Return Ensured Orbit Insertion and Trajectory Design with MOI Robustness in MMX Mission
Shota TAKAHASHINaoko OGAWAYasuhiro KAWAKATSU
Author information
JOURNAL RESTRICTED ACCESS Advance online publication

Article ID: 17.404

Details
Abstract

Failure of the orbit insertion maneuver has a significant impact on the entire mission, for the trajectory of a spacecraft is largely deflected by swing-by. The risk can be reduced by targeting a point on the B-plane where the spacecraft reaches the free-return (FR) trajectory with the target body in the case of insertion failure. The backup orbit must also satisfy conditions suitable for the mission. We investigated the type of orbit insertion that is both robust to failure and reasonable for the mission requirements. We call this method FR ensured orbit insertion. Among various failure modes of the orbit insertion maneuver, we focus on the complete maneuver failure. The impact parameters on the B-plane to achieve the orbit insertion are formulated based on the geometry of velocity vectors at swing-by. The necessary deflection angle αFR at swing-by must be smaller than the possible maximum deflection angle αmax for the target body. When we introduce proper scaling factors, the relation of αmax and αFR is characterized by a single parameter λ. Using polar orbit insertion as an example, maps which show the reachability of FR trajectory after the insertion failure for each approaching condition are presented. The derived maps can be used as a tool to assess the applicability of the method in the mission design. Finally, as an application to practical mission design, we demonstrate the use of FR ensured orbit insertion in JAXA’s MMX mission.

Content from these authors
© 2019 The Japan Society for Aeronautical and Space Sciences
feedback
Top