クワ産生のフィトアレキシン類の構造

北大理 高杉光雄・長尾繁光 Liliana Muñoz
石川真一 正宗直
委証 白田昭* 高橋幸吉

植物は常に種々の微生物に曝されているが、いくつかの防御機構をそなえて対処している。表皮のクチクラ層のような物理的防御機構の他に、表皮に含まれる先在抗菌性成分も化学的防御手段として役立つとされている。さらに植物が菌に感染した際に新しくつくられる健全植物には検出されない抗菌性物質は、フィトアレキシンといわれ、病害抵抗機構のうち最も重要なものの一つとされている。

クワの樹皮について調べたところ、表皮には抗菌性物質が存在するが、内部の皮層部及び木質部には抗菌性物質は存在しなかった。しかし病原菌を接種すると皮層部、木質部は抗菌性物質を産生した。

同様にクワの葉も健全時にはみられない抗菌性物質を産生した。そこでTLC bioassay法でそれぞれの抽出物をしぼったところ左図に示すように、部位によって異なる抗生物質スポット群を示した。次にこれら各部位に含まれる抗菌性化合物の単離及びそれらの構造について述べる。

抽出と単離

材料はクワ品種-ノ類 (*Morus alba* L. cv. Ichinose)を用いた。Fusarium solanum t.sp. *morii*を接種したクワ枝の皮層部、木質部、葉、並びに健全クワ枝表皮をアセトンで抽出し、各種抽出物をシリカゲル、ポリアミド、Sephadex LH-20等のカラムクロマトグラフィーで分画し、さらに結晶化により罹病皮層部から *moracin A*～*L* (1～12)、罹病木質部からは *oxyresveratrol* (13)、4'-prenyl- *oxyresveratrol* (14)、*moracin M* (15)、罹病葉からは化合物 (16)、健全表皮からは既知化合物である *kuwanon C* (17)、*morusin* (18) 9他に、新化合物 (19)、(20)、(21)を単離した。なお単離の過程は、イネごま葉枯病菌に対する抗菌性試験、TLC、HPLCで追跡した。

* 現、農業技術研究所

275
Ⅱ クワ枝皮属のフイトオレキシン

moracin A ③(1)

mp 83～85°，C₁₆H₁₄O₅，%e 286 (M⁺)

PMR (acetone-d₆) δ 3.88 (3H, s)，3.96 (3H, s)，
6.44 (1H，t, J=2)，6.45 (1H，d, J=2)，6.82 (1H，d，J=2, 0.8)，6.94 (2H，d，J=2)，7.13 (1H，d，J=0.8)
8.62 (2H，brs, 2OH)，UV は左図に示した。
IR でカルボニル基の吸収なし。これよりテータ及びCMR
等から moracin A の構造として 2-phenylbenzofuran
骨格を有する 1a を推定した。δ 6.82 と 7.13 の
0.8Hz という J 値は，benzofuran の 3-H と 7-H と
の long-range coupling によると考えられる。dissym-
た (1e) をオゾン分解しアルデヒドエステル (1k) を得.
さらにケトン化で 2 種の既知化合物 1c，1d を得た
ことから moracin A の構造を 1a と確定した。

moracin B ③(2)

mp 184～185°，C₁₆H₁₄O₅，%e 286 (M⁺)

PMR δ 3.83 (3H, s)，3.94 (3H, s)，6.43 (1H，t，J=2)
6.97 (2H，m)，7.04 (1H，s)，7.08 (1H，d，J=0.8)
7.21 (1H，brs)，7.33 (1H，s，OH)，8.50 (1H，s，OH)
UV は左図に示した。他 CMR 等のデータから 1b と同様
の 2-phenylbenzofuran 骨格を有する 2a を推定した。
OH，OMe の位置確認の為に diethyl ether (2a) のオ
ゾン分解を行いアルデヒドエステル (2c) を得。さ
らにケトン化により既知化合物 2d，2e を得。moracin
B の構造を 2a と確定した。

moracin C ③(3)

mp 148～149°，C₁₉H₁₈O₄，%e 310 (M⁺)

UV は moracin A，B に似ており，IR ではカルボニル基による吸収なし。
PMR で 8.35 (2H，brs)，8.51 (1H，brs) に 3 つのか OH，及び 8.167

276
moracin D\(^5\) (4), mp. 130~131\(^\circ\), C\(_{19}\)H\(_{16}\)O\(_4\), \(\text{M}\) \(=\) 308 (M+)

cアルボル基を含む。UVはmoracin A、B、Cと同じ様2-phenylbenzofuran骨格を示す。PMRで81.42 (6H.s), 5.64 (1H.d, J=10), 6.73 (1H.d, d=1, J=10, 2.8) はdimethyl(chromene 環の存在を示しさらに8.62 (1H.d, d=1, 6.8) とlong-range couplingを示していること、diacetate (4a) で、olefinic proton が 5.85 (1H d, J=10), 6.47 (1H, d, J=10) と高磁場シフトを示すことから4a）を与え、moracin CのDDQ処理でmoracin Dを得た事は4a）を支持する。

moracin E (5), mp 184~185\(^\circ\), C\(_{19}\)H\(_{16}\)O\(_4\), \(\text{M}\) \(=\) 308 (M+)

UVは1~4のUVとは形が少し異なる。

PMRは8.144 (6H.s) 5.68 (1H.d, J=10)

6.85 (1H, d, J=10, 0.8) に水と同様dimethyl-chromene 環の存在を示し、6.39 (1H,d,d, J=24, 0.8), 6.83 (1H, d, J=2.4) にhas long-range 及びmetha couplingをおこしているprotons がある。また4と同様、4,5,7位にassignされるprotons がみられる。またdiacetate (5a) でolefinic proton は高磁場シフトしないこと、dihydro 体 (5b) のUV がmoracin Cに似ている事等より5a）と決定した。

moracin F (6), mp 188~189\(^\circ\), C\(_{16}\)H\(_{14}\)O\(_5\), \(\text{M}\) \(=\) 286 (M+)

UVはmoracin Bに非常に似ている。dimethyl ether (6a) は2b）と一致した。PMRから2a）と同様、2ケの異なるchemical shifts を示したMeOと2ケのOHをもつ。moracin Bとの違いは6.36 (1H, t, J=2), 6.85 (2H, d, J=2) のピークである。この事より構造をさ
6 と決定した。

moracin G (7), mp 198～199°, C₁₉H₁₆O₄, m/e 308 (M⁺).

UV は moracin C と良く似ている。PMR で、δ
1.58 (3H, s), 3.74 (2H, m), 4.47 (2H, br s)
5.74 (1H, m), CMR で δ 19.9 (6), 22.4 (7), 73.1 (7)
の各ピークは dihydrooxepin 構造の存在を示す。

また benzofuran の 3 位と 7 位の coupling がみられないこと、及び moracin C (3)
D (4) のデータとの比較から構造式を⑦ と決めた。

moracin H (8), mp 191～192°, C₂₀H₁₈O₅, m/e 338 (M⁺)

UV は moracin A (1) の UV に良く似ている。PMR
で δ 1.60 (3H, s), 3.67 (2H, m), 4.48 (2H, s)
5.75 (1H, m), CMR で 20.2 (9), 22.3 (7)
73.1 (7) の各ピークは moracin G と同様の
dihydrooxepin 構造を示す。δ 3.92 (3H, s) は 1 位
の MeO の存在を示す。さらに dimethyl ether (8a), diacetate (8b) の各データ
を moracin A と比較する事により構造式を⑧ と決めた。

moracin I (9), mp 161～162°, C₂₀H₂₀O₄, m/e 324 (M⁺)

UV と PMR から 6-hydroxy-2-phenyl benzofuran 骨格が増え考えられる。δ 1.66 (6H, br s), 3.47 (2H, br d)
(6, J=7), 5.16 (1H, br t, J=7) から phenyl 基が、
δ 3.84 (3H, s) から 11 位の MeO が存在し、他に
δ 6.54 (1H, d, J=2), 6.79 (1H, d, J=2) にピークが
存在する。MS において moracin C のような M-C₄H₇ オリ C₄H₈ のピークが
ない事、及び diacetate (9a) のデータから moracin I に構造式 9 を与えた。

moracin J (10), mp 241～242°, C₁₉H₁₁O₅, m/e 272 (M⁺)

UV は moracin B に非常に良く似ている。また
moracin B 同様 NaOH を加えても入 max は、ほとんど
変化しない。PMR で δ 3.93 に 11 位の MeO
が、7.43 (1H, br s), 8.48 (2H, br s) に 3 位の
OH がみられる。dimethyl ether (10a) は 18b に一致する。

diacetate (10b) のデータ等を moracin B (2), F (e) と比較する事により、
構造式を 10 と決定した。

278
moracin K (11), mp 233～234°, C19H16O5, mε 324 (M+)
UV はこれまでの moracins とは異なる。 PMR で
5.16 (6H, S), 5.85 (1H, d, J=10), 6.84 (1H, d
J=10) は dimethylchromene 環の存在を示すが、
long-range coupling はおしていない。triacetate (11a)
にも olefinic proton は高磁場シフトを示さない。
本系添加して得られた dihydro 体 (11b) の UV は, moracin B と非常に良
く似たスペクトルを示した。さらに各種データを検討し構造式 11 を与えた。

moracin L (12), mp 226～227°, C19H16O5, mε 324 (M+)
moracin B と良く似た UV を示す。 PMR. 5.158
(3H, S), 3.72 (2H, m), 4.96 (2H, S), 5.72 (1H.
m) は dihydroxepin 構造を示し, 8.765 (1H,
brs) 8.46 (2H, brs) から 3 化の OH が存在する。
triacetate (12a), trimethyl ether (12b) のデータ等
を moracin B (2), H (8) と比較する事により構造式 12 を与えた。

Ⅲ クワ枝木質部のフィトアルケリシ
oxyresveratrol (9) (13), mp 194～200°, C14H12O4, mε 244 (M+)
tetramethyl ether (13a) の PMR (acetone-d6)
δ 7.04, 7.40 (各 1H, d, J=16), 3.79 (6H, S).
3.81 (3H, S), 3.87 (3H, S), 7.56 (1H, d, J=9)
6.46 ～ 6.64 (2H, m), 6.39 (1H, t, J=2), 6.70 (2H,
d, J=2) から trans-2,3,4,5-tetramethoxy stilbene
と推定し, 13a を KHMnO4 酸化し, 2,4-及び 3,5-dimethoxybenzoic acids
をえたことから 13 の構造を確定した。13 は既知物質 oxyresveratrol (10)
と一致する。

4-bromoxyresveratrol (9) (14), mp 196 ～ 197°, C14H20O4, mε 312 (M+)
tetramethyl ether (14a) の PMR は δ 7.03 ～ 7.31
δ 6.46 ～ 6.66 (2H, m) 6.65 (2H, br s) に 5 化の aromatic protons,
δ 1.63, 1.95 (各 3H, S) 3.31 (2H, br d, J=7) 5.16 (1H, br t, J=7)
にpreny基による吸収を示す。m/e 257 (M-C4H7, 91%) に特徴的なピークがあらわれている事が、27α aromatic protons が singlet である点などから、構造式は与えられた。

moracin M (15)

mp 265°, C14H10O4, m/e 242 (M+)

酯環に示すような moracin C に良く似たUVを示す。PMR は 8.36 (1H, 五, J=2) 6.85 (2H, d, J=2) に 3.5'-dihydroxyphenyl要、8.73 (1H, d, J=8) 6.78 (1H, d, J=8) 6.97 (1H, br, J=2) 7.00 (1H, d, J=0.8) に 2-substituted-6-hydroxybenzofuranに基づく吸収を示す。CMR のデータも合せて検討し moracin M に構造式を与えた。15 は既知化合物と一致する。

IV 葉のフィトアレキシン，化合物 16

mp 185° (decomp.) [α]D = +193.7° (c=1.02 in acetone) IR (KBr) 1620 cm⁻¹, moracin C のスペクトルに似たUVを示す。PMR (acetone-d6)

8.18 (3H, s), 1.71 (3H, s), 1.95 (3H, brs)
2.10~2.80 (2H, m), 3.28 (2H, br, d, J=7), 3.77 (1H, m), 4.14 (1H, brs), 4.66 (1H, m), 5.17 (1H, brt, J=7), 5.78 (1H, brs), 6.31 (1H, dod, J=8, 2.5), 6.44 (1H, d, J=9), 6.43 (1H, d, J=2.5), 6.70~7.10 (6H, m), 7.32 (1H, d, J=8)
8.39 (1H, d, J=9), 8.0~9.0 (6OH), 12.84 (1H, s, OH) に 36 からのprotons が見られた。MS において M⁺ はみられなかった。完全 methyl 化物のPMR で 1 チの MeO が見られ、m/e 746 に M⁺ が観測された。HR-MS 元素分析等により heptamethyl ether の分子式は C46H56O9 である事がわかった。従って化合物 16 は分子式 C39H36O9 をもつ。

V 健全表皮の抗能性化合物 (17, 18, 19, 20, 21)

健全表皮には極めて多種類のフェノール性化合物が含まれているがそのほかから既知化合物である feuwanon C (13), morasin (18) の他に、新成分のフランボンを単離し、各種スペクトルデータから構造式を 19, 20, 21 と決めた。
謝辞　kuwunon C, morusinの標品を御惠与いただいた東邦大の野村太郎博士に深謝いたします。

References
THE STRUCTURE OF PHYTOALEXINS PRODUCED IN DISEASED MULBERRY

M. Takasugi, S. Nagao, L. Muñoz, S. Ishikawa, and T. Masamune
(Department of Chemistry, Faculty of Science, Hokkaido University)

A. Shirata and K. Takahashi
(The Sericultural Experiment Station)

Phytoalexins are antimicrobial compounds produced newly by plants in response to microbial infection and their production is believed to be an important disease resistance mechanism in higher plants. We describe herein the isolation and structure elucidation of antifungal metabolites isolated from mulberry (Morus alba Linné) infected with Fusarium solani f. sp. mori and qualified as phytoalexins.

The diseased cortex and phloem tissues of shoots, xylem tissues of shoots, and leaves were extracted with acetone. The respective extracts were fractionated sequentially by column and preparative thin-layer chromatography over silica gel, polyamide, and/or Sephadex LH-20, resulting in isolation of twelve new metabolites [moracins A ~ L (1 ~ 12)], oxyresveratrol (13) and two new metabolites [4'-prenyloxyresveratrol and moracin M (14 and 15)], and one new unidentified metabolite (16) from the afore-mentioned diseased parts of mulberry, respectively. Healthy epidermis of the plant was also examined in the same manner, and three new antifungal compounds (17 ~ 21) were isolated along with known compounds, kuwanon C (17) and morusin (18). The structure of all these new compounds, except 16, was determined as shown in the formulas on the basis of the spectral and chemical data.