光学活性mahuba lactonesおよび関連化合物の合成研究

mahuba lactonesはアマゾン産のクスノキ科の植物Licaria mahuba（Samp.）Kostermより単離されたα-alkylidene-β-hydroxy-γ-lactone構造を有する8種の化合物群の総称であり、これらはすべて同一の炭素骨格を有する。一方これと構造的に類似したobtusilactones類およびlitsenolides類が各大日本産のクスノキ科の植物Lindera obtusiloba Blume（だんごほうい）およびLitsea japonica（Thunb.）Jus.（はまびわ）よりすでに単離されている。これらの化合物をその構造によって二つのtype（type Iおよびtype II）に分け、また立体化学や側鎖の構造の違いによって整理した結果を表1、2に示す。特にtype Iにはcytotoxicityを有すると報告されている化合物（obtusilactones類）があり、興味深い。

表1. type Iの化合物

<table>
<thead>
<tr>
<th></th>
<th>C-β</th>
<th>OH</th>
<th>R1</th>
<th>R2</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>obtusilactone</td>
<td>H</td>
<td>b</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>isoobtusilactone</td>
<td>b</td>
<td>H</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>obtusilactone A</td>
<td>H</td>
<td>a</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>isoobtusilactone A</td>
<td>a</td>
<td>H</td>
<td>/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mahubanolide</td>
<td>R</td>
<td>α</td>
<td>H</td>
<td>b</td>
<td>/3</td>
</tr>
<tr>
<td>isomahubanolide</td>
<td>R</td>
<td>α</td>
<td>H</td>
<td>b</td>
<td>/3</td>
</tr>
<tr>
<td>mahubynolide</td>
<td>R</td>
<td>α</td>
<td>H</td>
<td>c</td>
<td>/3</td>
</tr>
<tr>
<td>isomahubynolide</td>
<td>R</td>
<td>α</td>
<td>c</td>
<td>H</td>
<td>/3</td>
</tr>
<tr>
<td>mahubanolide</td>
<td>H</td>
<td>a</td>
<td>/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>isomahubanolide</td>
<td>a</td>
<td>H</td>
<td>/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2. type IIの化合物

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
</table>

157
<table>
<thead>
<tr>
<th>化合物</th>
<th>C-β,γ</th>
<th>Me</th>
<th>OH</th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>litsenolide A<sub>1</sub></td>
<td>S,R</td>
<td>αβ</td>
<td>H</td>
<td>b</td>
<td>H</td>
<td>9</td>
</tr>
<tr>
<td>litsenolide A<sub>2</sub></td>
<td>S,R</td>
<td>αβ</td>
<td>H</td>
<td>b</td>
<td>H</td>
<td>9</td>
</tr>
<tr>
<td>litsenolide B<sub>1</sub></td>
<td>S,R</td>
<td>αβ</td>
<td>H</td>
<td>c</td>
<td>H</td>
<td>9</td>
</tr>
<tr>
<td>litsenolide B<sub>2</sub></td>
<td>S,R</td>
<td>αβ</td>
<td>H</td>
<td>a</td>
<td>H</td>
<td>9</td>
</tr>
<tr>
<td>diphromahubanolide A</td>
<td>R,S</td>
<td>β α</td>
<td>H</td>
<td>b</td>
<td>H</td>
<td>13</td>
</tr>
<tr>
<td>isodiphromahubanolide A</td>
<td>R,S</td>
<td>β α</td>
<td>H</td>
<td>b</td>
<td>H</td>
<td>13</td>
</tr>
<tr>
<td>diphromahubynolide A</td>
<td>R,S</td>
<td>β α</td>
<td>H</td>
<td>c</td>
<td>H</td>
<td>13</td>
</tr>
<tr>
<td>isodiphromahubynolide A</td>
<td>R,S</td>
<td>β α</td>
<td>H</td>
<td>a</td>
<td>H</td>
<td>13</td>
</tr>
<tr>
<td>dihydromahubanolide A</td>
<td>R,S</td>
<td>β α</td>
<td>H</td>
<td>a</td>
<td>H</td>
<td>13</td>
</tr>
<tr>
<td>isodihydmahubanolide A</td>
<td>R,S</td>
<td>β α</td>
<td>H</td>
<td>b</td>
<td>H</td>
<td>13</td>
</tr>
<tr>
<td>dihydromahubanolide B</td>
<td>S,S</td>
<td>β β</td>
<td>H</td>
<td>b</td>
<td>H</td>
<td>13</td>
</tr>
<tr>
<td>isodihydmahubanolide B</td>
<td>S,S</td>
<td>β β</td>
<td>H</td>
<td>c</td>
<td>H</td>
<td>13</td>
</tr>
<tr>
<td>diphromahubanolide B</td>
<td>S,S</td>
<td>β β</td>
<td>H</td>
<td>c</td>
<td>H</td>
<td>13</td>
</tr>
<tr>
<td>isodihydmahubanolide B</td>
<td>S,S</td>
<td>β β</td>
<td>H</td>
<td>a</td>
<td>H</td>
<td>13</td>
</tr>
</tbody>
</table>

本研究は市場の安価な光学活性原料を用いて、特に type I の化合物の光学活性体の合成を目指しつつ、その合成過程において得られる中間体を用いる type II の化合物の合成も行うこと目的としている。今回は type II のうち (−) - diphromahubanolide B (1a) および (−) - isodihydmahubanolide B (1b) の合成および obtusilactone A (2a) および isooobtusilactone A (2b) の合成を目指して行った研究結果について報告する。⁵⁾

合成経路の概要

次に示す経路に従って、天然型の L-(+) - 酒石酸よりまず 3 を得る。これを用いて一方は obtusilactone A (2a) 、isooobtusilactone A (2b) の前駆体 4a,b の合成を行った。もう一方は type II (2a) の dihydro 型化合物 1a, 1b に導いた。

(−)-dihydmahubanolide B および (−)-isomahubanolide B の合成

天然型の L-(+) - 酒石酸より文献記載の方法⁶⁾ によりオキシエステル 3
とした。次にこのヒドロキシメチル基をメチル基へ還元するため常法に従ってメチル化とし、ついてて NaI によりヨウ化物とした。これを Et₃N 存在下 Pd-C を触媒とし水素分解を行って目的のエステル 5 を好収率で得た。

次に 5 を keto benzoate 6 へ変換するため、加水分解しカリウム塩とした後 (COCl)₂ により酸クロリドとした。これをジアゾメチルケトンとし、ジオキサン中 Cu 粉存在下安息香酸と加熱すると mp 58～9°C、[α]D +85.0° (CHCl₃) の keto benzoate 6 が得られた。
6を用いて次にWittig反応を行った。THF中C\textsubscript{16}H\textsubscript{33}PPh\textsubscript{3}Br／BuLiと処理するとbenzoate7a,bとアルコール8a,bの混合物が得られた。これらはいずれも二重結合に関する(E,Z)異性体からなる。7a,bは異性体の分離を行うことなくそのままLiAlH\textsubscript{4}で還元しアルコール混合物とした。アルコール体はSiO\textsubscript{2}クロマトグラフィーにより主生成アルコール8bと副生成アルコール8aに分離できた。両者の比率は約8:2であった。

8bおよび8aの構造は次の様に決定した。すなわち8bおよび8aを各々CH\textsubscript{2}Cl\textsubscript{2}中MnO\textsubscript{2}で酸化（反応は遅い）するとアルデヒド9bおよび9aを与ええた。

そして各々のアルデヒドプロトンの化学シフト7は10.08および9.70ppmであった。従ってアルコール8bおよび8aは図に示すような構造を有することになる。次にアルデヒドのカルボン酸への酸化を様々な条件下で試みた。Ag\textsubscript{2}O／OH-（KOH, Ba(OH)\textsubscript{2}, K\textsubscript{2}CO\textsubscript{3}）法、Ag\textsubscript{2}O／CN-法はよい結果を与えないとわかった。Jones酸化は複雑な混合物を与える。そこでpyridinium dichromate (PDC／DMF9)を用いたところ、一部カルボン酸への酸化が起ることがわかった。アルコール8bおよび8aに対しexcessのPDCを室温で作用させたところ、アルデヒドの他にカルボン酸10が得られた。しかしながら
ら NMR よりいずれも二重結合法の異性化をともない、混合物であることがわ
かった。現在二重結合法の異性化を起こさずにアルコール又はアルデヒドをカルボン酸に酸化する方法を検討中である。SiO₂ クロマトグラフィーにより分離したカルボン酸の混合物を CF₃CO₂H-H₂O (9:1) (常温) 又は 90 %
AcOH (80℃) と処理すると γ-ラクトンの混合物が得られた。これより分取
TLC により目的の二つのラクトンを分離した。主生成物は mp 78-9℃, [α]D
−102° (dioxane) を示し、その IR, NMR スペクトルは天然の isodihydro-
mahubanolide B (1b) (mp 70-1℃, [α]D 24°−93.3° (dioxane))のそれらと良く一致している。少量成分は mp 66-7℃, [α]D 21°−37° (dioxane) を示し、そ
のスペクトルデータは 1b の二重結合に関する異性体である dihydromahuba-
nolide B (1a) (天然からは絶対に単離されていない) の構造をよく支持
している。

obtusilactones 類の合成研究
現在のところ obtusilactones 類の絶対配置は不明である。しかし
Gottlieb 1) は mahubalactone などの旋光度の比較から (S) 配置を有すると推定している。この推定が正しいとするならば、すでにのべた dihydromahubanolide B の合成過程で用いたオキシエステル 3 を上記と類似の反応経路に従って変換することにより、天然型の絶対配置を有す
る obtusilactones 類を得ることが可能となる。
今回は側鎖が飽和型の C_{19}-obtusilactone と呼ばれる obtusilactone A および isoobtusilactone A の合成を目指して行った実験結果についてのべる。

3 の水酸基をクロルでおきかえ後すでに述べた反応経路に従って keto benzoate 11 を得た。mp 56-7°C, [α]_{D}^{24} +52.5° (CHCl_{3})。

次に臭化テトラデシルより得た phosphonium塩を用い、先にのべたと同様の条件で Wittig 反応を行った。benzoate 12 a,b およびアルコール 13 a,b は共に二重結合に関する異性体の混合物である。前回同様 12 a,b はそのまま LiAlH_{4} で還元し、アルコール 13 b および 13 a は SiO_{2} クロマトグラフィーにより容易に分離可能であり、両者の比率は約 1:3 であった。これらの構造はその NMR を先に得た 8 b および 8 a の NMR と比較することにより推定した。1,3-dioxolane 環の4位のメチルプロトンに注目すると、8 b は 8 a に比べ 0.48 ppm 低磁場側に位置する。13 b および 13 a も同様に 0.48 ppm の差を示すことからアルコール 13 a, 13 b は図示した構造をもつ。このことは前回同様アルデヒド 14 a, 14 b への酸化によって確かめられた。

アルコール又はアルデヒドからカルボン酸への酸化は先の場合と同様困難であった。PDC/DMSO による酸化は二重結合の異性化を起こし、カルボン酸の混合物を与えた。それを分離することなく \text{CF}_{2} \text{CO}_{2} \text{H} - \text{H}_{2} \text{O} (9:1) と処理するとラクトン混合物が得られ、これより iso 型ラクトン 14 b, mp 71-2°C, [α]_{D}^{25} -120° (dioxane) を精密に単離した。もう一方のラクトン 14 a の精密な単離
を現在行っている。これらのラクトンの obtusilactone A (2a) および iso obtusilactone A (2b) への変換は現在進行中である。

13b or 14b
\[
\begin{align*}
14b & \rightarrow \text{PDC, DMF} \\
& \text{CH(CH_2)_{12}CH_3} \\
\text{CO}_2\text{H} & \text{CH_2Cl} \\
\end{align*}
\]

謝辞：mahubalactonesのスペクトルデータを御惠与下さったサンパウロ大学 M. Yoshida 教授に深謝します。

References and Notes
4) mahubalactonesのうち4種類の化合物は純粋に単離されていない。また obtusilactones類の絶対配置は明らかにされていない。
5) この研究の一部は昭和55年度日本農芸化学会大会（講演要旨集 p211）に発表されている。
SYNTHETIC STUDIES OF OPTICALLY ACTIVE MAHUBA LACTONES
AND RELATED COMPOUNDS
A. Tanaka and K. Yamashita

(Department of Agricultural Chemistry, Tohoku University)

The total synthesis of (-)-dihydromahubanolide B (1a) and (-)-isodihydromahubanolide B (1b), two components of the amazonian Lauraceae, Licaria mahuba (Samp.) Kosterm. has been accomplished starting from natural L-(+)-tartaric acid. Synthetic efforts directed toward the synthesis of obtusilactone A (2a) and iso-obtusilactone A (2b), structurally related compounds isolated from the Japanese Lauraceae, Lindera obtusiloba Blume. have been also described. Thus, natural L-(+)-tartaric acid was converted to the known hydroxy ester 3 which gave in several steps the keto benzoate 6, a key intermediate of the route. Keto benzoate 6 was transformed into (-)-dihydromahubanolide B (1a) and (-)-isodihydromahubanolide B (1b) by the reaction sequence involving the Wittig reaction, oxidation and acid treatment. The hydroxy ester 3 afforded the lactones 4a and 4b according to the sequence similar to that described above. Conversion of these lactones into 2a and 2b is now under investigation.