らん藻Anabaena flos-aquaeのコリンエステラーゼ阻害物質anatoxin-a(s)

ハワイ大・化学 松永光樹，R. E. ムーア，W. P. ニムラー
ライト州立大・生物 W. W. カーマイケル

anatoxin-a(s)はらん藻Anabaena flos-aquaeが生産する神経毒で、この毒性（LD50 20-40μg/kgマウス）はコリンエステラーゼ阻害活性によりることが知られている。1,2) 培養藻体（NRC-525-17株）および野外採取試料（サウスダコタ州リックモンド湖）3) からanatoxin-a(s)2) を単離しその構造を決定したので報告する。

anatoxin-a(s)の単離は、当初はマウス毒性を指標として行が、本物質がコリンエステラーゼ阻害することから、酵素阻害活性を用いて検出する方法を検討した。Ellmanらの方法4) は高感度であるが適切な影響を受けるべく、単離の過程では使用できなかった。一方、プラ肝臓エステラーゼの阻害活性をTLC上で検出すMendozaの方法5)をコリンエステラーゼに適用しても、TLCあるいは沪紙上では酵素反応が起こらなかった。しかし、Mendoza法の変法、すなわち、試料溶液とスポットしたTLCプレートあるいは沪紙にまずacetylthiocholineおよび5,5'-dithio-bis(2-nitrobenzoic acid)溶液とスポットし、最後に酵素溶液と営露すると、anatoxin-a(s)を含有する試料は黄色のバックグラウンド中に白色のスポットを与えた。この方法により、簡便に、マウス法より約20倍高感度でanatoxin-a(s)を検出できるようになった。

凍結乾燥藻体を0.05N酢酸-エタノールで抽出後、抽出物を水とジクロールメタン、ついて水とヘプタンで順次分配した。水層にある毒性が認められたので、濃縮後0.05N酢酸-メタノールと0.05N酢酸-エタノールによる抽出をくり返し有毒成分を濃縮した。抽出物をToyopearl HW 40F（0.05N酢酸-メタノール）によるゲル過1)、CN(1% 酢酸)およびODS(1% 酢酸)カラムを用いるHPLCに順次付し、anatoxin-a(s)を無色固体として0.05%の収率で得た。このアルカリ溶液(pH 8.1)中で速かに分解するが、中性にお
より弱酸性（pH 3-5）溶液中では比較的安定である。培養液体から単離した anatoxin-aCS と野生株野から単離したもののは CD（H\textsubscript{2}O，[θ]\textsubscript{20} 7.300，[θ]\textsubscript{232} +3900） 1HNMR スペクトルおよびクロマトグラフィーにおける挙動が一致した。

マススペクトルデータ（正イオンフラBMS（四半 253，1067，MH+）
負イオンフラBMS（四半 251，M-H-），FDMS（四半 253，MH+）から anatoxin-a（5）の分子式は C\textsubscript{7}H\textsubscript{17}N\textsubscript{4}O\textsubscript{4}P と推定された。1H および13C NMR スペクトルからジメチルアミン基 [1\textsubscript{J}H, 3.00 (6H，S)；1\textsubscript{J}C, 43.9 (br s)]，リンに結合したメトキシ基 [1\textsubscript{J}H, 3.79 (3H，d，3\textsubscript{J}H, p 253 = 11.0 Hz)；1\textsubscript{J}C, 56.1 (8 d，2\textsubscript{J}C, p = 6.7 Hz)]，1,2,3-3 置換プロパン 3\textsubscript{H}, 3.47 (dd，J = 2.9，-13.9 Hz) 3.75 (dd，J = 9.3，-13.9 Hz)，4.71 (m)，3.51 (dd，J = 9.7，-10.1 Hz)，4.01 (dd，J = 9.4，-10.1 Hz)；1\textsubscript{J}C, 45.3 t，58.7 t，60.3 t] およびヘテロ原子 3 つを置換された S2 炭素（1\textsubscript{J}C, 163.7）の存在が示唆された。メトキシ基の水素と炭素のみがリンとはっきりとしたカッティングを示した。31P NMR では 31\textsubscript{P} 6.16 に 1 つのシグナルが認められが、この化学シフト値がリン酸エステルあるいはホスホアミドのいずれかが存在するものと考えられた。7) 3 置換プロピル基のうち 1 つのメチレン基の J_{HH, H} 値（-10.1 Hz）およびその J_{HC, HC} 値（151 Hz）からこの炭素と隣のメチレン炭素（J_{HC, C} = 151 Hz）が 5 員環にあたることが示唆された。

上記部分構造間の関係を明らかにするため，HMOC および HMBC スペクトルを測定した。S/N はよくなかったが，HMOC スペクトルから結合離れた炭素と水素の帰属をつけることができた。しかし
ながら、5mgの試料を用いたにもかかわらず、HMBCスペクトルはピーキーをもって収束しなかった。そこで、NaH13CO$_3$ (99% 13C)およびNa15NO$_2$ (99% 15N)を加えた培地中でA. flos-aquaeを培養し13C (50%)および15N (90%)でエンリッチされたanatoxin-a(5)を得た。このNMRスペクトルから以下の結論を得ることができた。(1) 163.7 ppmの3H炭素は3つの窒素と隣接しており、上述の5環系は環状グアニジンとなる。(2)メチルアミノ基は残りのメチレンと結合し、アミノイミダゾリ環の側鎖を形成する。(3) リンと直接結合する窒素はない。したがって、メチルリン酸基が存在する。(4) メチルリン酸基はグアニジン窒素のいずれかと結合する (2J$_{P,N}$ = 4 Hz)。以上の、NMRから得られたデータは、FAB-MSMSの結果から支持された。(Scheme 1)

anatoxin-a(5)は-20℃で貯蔵すると、徐々に分解し、2、3およびメチルリン酸を与える。\tilde{M}[FABMS, MH$^+$, m/z 143, 1298; CD (H$_2$O) [θ]498 +11000]は\tilde{M}[FABMS, MH$^+$, m/z 159, 1245; CD (H$_2$O) [θ]235 +2400]から酸素が1つ失われた物質であり、2を接觸還元に付すると主が定量的に生じる。主はanatoxin-a(5)からメチルリン酸基が加水分解により除かれたもので、C-5メチレンプロトンが1H 4.48 ppmに高磁場シフトしているが、他のプロトンシグナルのケミカルシフトはほとんど差がない。一方、\tilde{M}とm/zを比べると、\tilde{M}の側鎖のメチレンプロトンの1つが大きく (0.37 ppm) 高磁場シフトしている。さらに、13C NMRでは、\tilde{M}とm/zの間にはOメチルシングナル残否のほかに大きな違いがないのでに対し、\tilde{M}では大きな変化が認められる。すなわち、\tilde{M}とm/zを比べてC-5 (7.8 ppm)およびC-2 (1.9 ppm)が高磁場シフトし、C-4 (2.7 ppm)およびC-6 (2.4 ppm)が低磁場シフトしている。neosaxitoxin, saxitoxin9およびmiharamycin AおよびB10の場合と比較した結果、\tilde{M}において水酸基およびメチルリン酸基がm/zのN-1にそれぞれ結合するものと推定した。したがってanatoxin-a(5)の構造は\tilde{M}となる。

C-5位の絶対立体配置を明らかにするためm/zの両鏡像体を合成した。(Scheme 2) まず、L-Asnを文献既知のN$_2$-2-N$_2$Boc-L-2,3-diaminopropionic acid (5)11)に導いた。\tilde{M}とN-hydroxy-succinimideエステル12を経てジメチルアミド\tilde{M}とした。保護基を
Scheme 1

\[
\begin{align*}
\text{HN} & \quad \text{HN} \\
\text{NMe}_2 & \quad \text{NMe}_2 \\
\text{NH}_2 & \quad \text{NH}_2 \\
\text{OH} & \quad \text{NH}_2 \\
\text{m/z} 253 & \quad \text{m/z} 159 & \quad \text{m/z} 143 & \quad \text{m/z} 141 & \quad \text{m/z} 96 & \quad \text{m/z} 100 & \quad \text{m/z} 84 & \quad \text{m/z} 84 \\
\text{C}_7\text{H}_{18}\text{N}_4\text{O}_4\text{P} & \quad \text{C}_6\text{H}_{15}\text{N}_4\text{O} & \quad \text{C}_6\text{H}_{15}\text{N} & \quad \text{C}_4\text{H}_8\text{N}_3 & \quad \text{H}_3\text{N}^+ & \quad \text{C}_5\text{H}_{10}\text{N} & \quad \text{C}_3\text{H}_6\text{N}_3 \\
\end{align*}
\]

reduction in glycerol matrix
除去（THA; H₂/Pd-C）した後に、得られたジアミンをBH₃-Me₂S で還元しトリアミン点に変換した。点をS, S'-dimethyl-N-tosyl-iminodi thiocarbonimidate で処理しtosylguanidine とした。このtosyl 基を48% HBr で加熱還流し除去して S-3 を得た。同様に D-Asnから出発して R-3 を得た。合成品はクロマトグラフィーにおける挙動、1Hおよび 13C NMR スペクトルが天然物から得たものと一致した。一方、CD スペクトルにおいて、L-Asnから合成した S-3 は天然物と同符号の正の Cotton 效果を 198nmに示したが、R-3 は反対の符号であった。以上の結果、C-5 の絶対立体配置を S と結論した。

anatoxin-a (s) は環状ヒドロキシグアニジンがリン酸エステルを形成した珍しい構造をもつ。この構造と活性は、N-hydroxy succinimide あるいは 1-hydroxybenzotriazole のエステル結合を思わせる。コリンエステラーゼ阻害性は、酸素の活性部位の Ser の水酸基がメチルリン酸化され、これが遊離することによって発現するもののと考えられる。

謝辞：本研究は NSF (REM) および米軍医学研究費 (WWC) の援助による。また、内藤科学振興財団による留学助成 (SM) も受けた。FABMS および MSMS スペクトルは Midwest Center for Mass Spectrometry の R. L. Cerny 博士および東大応微研の森崎尚子博士および岩崎成夫教授に測定していただいた。anatoxin-a (s) の単離および A. flos- aquae の培養は P. Thorn (WSU), V. Bornemann博士および B. Moore (UH) の協力による。初期の単離および NMR スペクトルの測定は J. Stewart (UH) および N. A. Mahmood博士 (WSU) によってなされた。また、化合物の合成に際し M. A. Tius 教授 (UH) に貴重なる助言を賜った。ここにあわせて深謝する。
Scheme 2

\[
\begin{align*}
\text{H}_2\text{N} & \begin{array}{c}
\text{C} \\
\text{NH}_2
\end{array} \to \text{ZCl} & \text{H}_2\text{N} & \begin{array}{c}
\text{C} \\
\text{NHZ}
\end{array} \\
\text{L-Asn} & \text{BocON}
\end{align*}
\]

\[
\begin{align*}
\text{BocHN} & \begin{array}{c}
\text{C} \\
\text{NHZ}
\end{array} & \to \text{HOSu, DCC} & \text{BocHN} & \begin{array}{c}
\text{C} \\
\text{NHZ}
\end{array} \\
\text{4} & \text{5}
\end{align*}
\]

\[
\begin{align*}
\text{H}_2\text{N} & \begin{array}{c}
\text{NH}_2
\end{array} & \to \text{TFA} & \text{H}_2\text{N} & \begin{array}{c}
\text{NH}_2
\end{array} \\
\text{6}
\end{align*}
\]

\[
\begin{align*}
\text{HN} & \begin{array}{c}
\text{NMe}_2
\end{array} & \to \text{HBr} & \text{HN} & \begin{array}{c}
\text{NMe}_2
\end{array} \\
\text{7} & \text{3}
\end{align*}
\]
References and Notes

 (b) Cook, W. O.; Beasley, V. R.; Dahlem, A. M.; Dellinger, J. A.;
 1988, 49, 500.
4. Ellman, G. L.; Courtney, K. D.; Andres, V., Jr.; Featherstone, R. M.
 Carmichael, W. W. Abstracts, Annual Meeting of the
7. (a) Tebby, J. C. In *Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis*;
 (b) Gorenstein, D. G. *Progress NMR Spectroscopy* 1983, 16, 1.
 1989, 111, in press.
 1978, 100, 6791.
 1983, 24, 1805).
 1964, 86, 1839.
Anatoxin-a(s), a Potent Anticholinesterase from *Anabaena flos-aquae*

Shigeki Matsunaga, Richard E. Moore,* Walter P. Niemczura

Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822

Wayne W. Carmichael

Department of Biological Sciences, Wright State University, Dayton, Ohio 45435

Anatoxin-a(s) is a neurotoxic alkaloid associated with the blue-green alga *Anabaena flos-aquae*. Its potent toxicity (LD$_{50}$ 20-40 μg/kg mice) is attributed to exceptional anticholinesterase activity.

Acidic alcoholic extract of the freeze-dried alga was subjected to partitioning and extraction with acidic alcoholic solutions to give a toxic concentrate. Gel filtration on Toyopearl HW40F (Supelco) followed by HPLC on CN and ODS columns gave pure anatoxin a(s) as a colorless solid in 0.05% yield.

The gross structure of anatoxin a(s) was determined by spectroscopic method on the toxin itself and on the degradation products. NMR data of the 13C and 15N enriched toxin were indispensable for the work.

The absolute configuration of anatoxin a(s) was elucidated by synthesizing one of the degradation products from L-Asn.

259