放線菌の生産するテルペン化合物の生合成研究

(東大・分生研) 〇瀬戸治男、渡辺裕之、折原信代
(東大院・応生化) 降旗一夫

カビが多様なテルペンあるいはステロイド化合物を生産するのに対し、生理活性物質の重要なソースであり、多種多様な骨格を有する代謝産物を生産する放線菌（Streptomyces）がイソプレノイド化合物を生産する例は極めて数少ない。

それらの化合物のうち、naphterin$^{1)}$(図1)、furauquinocin$^{2)}$、napyradiomycin$^{3)}$、terpentecin$^{4)}$等について生合成研究が行なわれ、メバロン酸経路を経て生産されることが報告されている。しかしながら、数多くのStreptomycesが生産するpentalenolactoneにはメバロン酸の前駆体である酢酸は全く取り込まれない。Cane等は$[\text{13C}]$グルコースがメバロン酸経路を経て取り込まれるとの報告をしているが$^{5)}$、取込みパターンの一部にメバロン酸経路では説明できない異常が見られ、未解決の問題として残されていた。

一方Rohmer等はホパノイド化合物の生合成研究により、下等な微生物およびある種の植物では、イソペンテニル2リン酸（IPP）の生合成は非メバロン酸経路（チアミン2リン酸が関与し、脱炭酸を伴うグリセロアルデヒド-3-リン酸とピルビン酸の総合による1-デオキシキシシロースの生成と、それに続く転位反応）によって行なわれていることを証明した$^{6)}$。この新経路によって、Streptomyces sp. UC5319によるpentalenolactoneの生合成を矛盾なく説明できる。

このことから、同じStreptomycesでありながら、ある種のものではメバロン酸経路を、またある種のものは非メバロン酸経路を利用してIPPを生産していることがわかる。ここでのような疑問が生じる。

(1) Streptomyces、メバロン酸経路を持つものと非メバロン酸経路を持つものの2つの群に分けられるのか？(2) ある種のStreptomycesは両方の経路を持っているのか？(3) 両経路を持っている場合、その発現は生育条件、あるいは生育時期等によってどのように影響されるのか？(4) 両生合成経路と代謝物の構造との間にはなんらかの関係があるのか？これらの疑問を解明するため、naphterin、およびStreptomycesの代謝産物としては初めてのテトラテルペノイドであるlongestin（旧称KS-505$^{7)}$）について以下の実験を行なった。

19
【Streptomyces aeriouifferにより生産されるmenaquinoneの生合成】

我々は、Streptomyces aeriouifferの代謝産物であるnaphterpinが、メバロン酸経路によって生合成されることを既に報告している1)。この菌がメバロン酸経路に加えて、非メバロン酸経路を有しているか否かを調べるために、二次代謝産物であるnaphterpinと一次代謝産物であるmenaquinone（本菌での主成分はMK-9（H₄）である）に注目して標識実験を行った。培養開始24時間後に[1,2-^13C₂]酢酸を添加したところ、取り込みが見られた（0.6〜0.7%）。次いで[6-^2H₂]グルコースを、より早い時期（16時間後）に添加したところ、図2に示すような^2H-NMRスペクトルが得られた。もし標識体が非メバロン酸経路によってmenaquinoneに取り込まれるとするならば、イソブレン単位の1位および5位に、一方メバロン酸経路によるならばイソブレン単位の2、4、5位に重水素が取り込まれる。図2において、分離の良いベンジル位のメチレンシグナル（*で示す）が強く認められるのに対して、6個のメチレンに由来するイソブレン単位の2位に由来する位置（+で示したシグナル）には極めて僅かしか取込まれない。したがって、このmenaquinoneのイソブレノイド側鎖には、グルコースが主として非メバロン酸経路により取り込まれていることが明らかになった。

次いで、^13C標識化合物を使用して、^13Cレベルでの確認を試みた。[U-^13C₆]グルコースを取込みさせて得られたHMBCスペクトルを図3に示す。[U-^13C₆]グルコースはメバロン酸経路および非メバロン酸経路の両方で取り込まれるため、イソブレン側鎖で観測される隣接した^13C-^13Cカップリングによるシグナルの分裂パターンは全く同じになる。両経路で異なるのは、各イソブレン単位の1位、2位の炭素と4位の炭素がメバロン酸経路では異なる酢酸に由来するのに対し、非メバロン酸経路では同一分子のグリセリアルデヒド-3-リン酸に由来するため、同時にラベルされることである。

したがって、各イソブレン単位の2位と4位の炭素間で^13C-^13C遠距離スピン結合が観測されれば、非メバロン酸経路で生合成されていることになる。しかし、通常1,3-位の炭素間における遠距離スピン結合の結合定数は極めて小さい値であり、観測が困難である。そこで、HMBC法による取込みパターンの解析を試みた8)。

上記のように、イソブレン単位の2位の炭素が^13Cで標
識されると、4位の炭素も同時に13Cで標識される。この時、2位の炭素に結合したプロトンは13C-1Hカップリングによりダブレットに分裂する（これをサテライトピークと呼ぶ）。このサテライトピークからの4位の炭素への遠距離スピン結合をHMBCにより観測する。ただし通常のHMBCの測定では、このサテライトピークを消去するlow pass J-filterが用いられているため、これをはずして測定を行う。

図3に示すように、各不飽和イソブレン単位の2位の炭素に結合した4.98および5.10ppmのプロトン（△、□、○で示す）から、各不飽和イソブレン単位の4位に相当する40.01、39.72および25.69ppmの炭素シグナル（▲、■、●で示す）への遠距離スピン結合によるサテライト交差シグナルが明瞭に認められる。この結果より、[U-13C$_6$]グルコースが非メバロン酸経路により効率良く取り込まれていることが13C-NMRでも確認された。

[naphterpinの生合成]
menaquinoneと同時に生産されたnaphterpinのHMBCスペクトル（low pass J-filterなし）を図4（左側）に示す。18位のメチルプロトンからのC-14へのクロスピーク強度は極めて弱く、非メバロン酸経路のnaphterpin生合成への寄与は極めて小さいと考えられる。このスペクトルでは12C-1Hに由来する強い不要なピークが数多く現れるため、これらを選択的に消去する測定法であるTANGO-HMBC法を開発した8)。本方法では図5に示すTANGOパルスにより、不要な磁化をz軸方向に、観測したい磁化のみをXY平面に配向させ、次いでHMBCパルス系列により観測する。その結果を図4（右側）に示す。不要なピークが消去されたため、ジェミナーールジメチル基のうち、18位のプロトンのみがC-14とクロスピークを示していることが容易に分かる。なお、17位のメチルプロトンからのC-17に対するクロスピークの一方は、強度が弱く図では現れていない。HMBC法で得られたデータは定量性が乏しく、厳密な議論が出来ないが、以上の結果は、S. aeriuviiferでは生育の初期には非メバロン酸経路が強く働いており、二次代謝産物の生産が始まる時期になるとメバロン酸経路が発現することを示していると考えられる。
【longestinの生合成】

longestinはホスホジエステラーゼの阻害剤としてStreptomyces argenteolusから単離された化合物である[1]（図6）。放線菌によって生産される初めてのテトラテルペンイドであり、また1位と12位にメチル基を有するという他のテルペンに例を見ない構造上の特徴を有する。本化合物がメバロン酸経路と非メバロン酸経路のどちらによって生合成されるかは、Streptomycesの分類とIPPの生合成経路の関係を明らかにするデータを蓄積する上で重要な問題と考えられる。また、メチル基の導入メカニズムに関しては、
C₆単位を有するIPPのホモログの関与の可能性も考えられた。

図6

標識体の取込実験

longestinは図6に示すようにケト型とヘミケタール型とが混在するので、NMRスペクトルを単純化するため、メチル誘導体に変換して各種NMRスペクトルを測定した。[1−13C]酢酸を用いて種々条件を経て、取込実験を行なったところ、C-42位のみに選択的に取り込まれ、他の部位には全く取り込みが見られなかった（取込率3〜20%）。このことは、テルペン骨格部分が非メバロン酸経路によって生合成されることを強く示唆している。そこで[U−13C₆]グルコースを用いて、実験を行なったところ図7に示すような取込パターンが得られた。太線は13C−13Cカップリングが見られた結合を表している。この結果より、非メバロン酸経路によってlongestinが生合成されることが判明した。なお、前述したTANGO-HMBC測定によりC-4位のメチルプロトンとC-3位の間に13C−13C遠距離スピン結合があることを確認した。

また[13CH₃]メチオニシンがC-1、C-12および0-メチル基に効率よく取り込まれた（図の▲で示す位置）ことより、IPPのホモログであるC₆単位の関与は否定される。なお、この2つのメチル基は閉環前の段階の中間体（octaprenyl-PP）に導入されると考えられるがその詳細は不明である。また、[U−13C₆]グルコースの取込パターンの解析より、芳香環部分はα-succinylbenzoic acidを最終中間体とするシキミ酸経路によって生合成されると考えられる。
謝辞

[6-2H2]グルコースを供与していただきました東京工業大学の柿沼教授、longestinの生産菌を提供して頂きました協和発酵株式会社に感謝いたします。

8) 梁藤 俊、生稲洋二、安澤 享、垣田信吾、中西 聡、好田真由美、佐野 浩；第33回天然有機化合物討論会講演要旨集、707 (1991)
8) 降旗一夫、渡辺裕之、瀬戸治男；第34回NMR討論会講演要旨集、305 (1995)
BIOSYNTHETIC STUDIES ON TERPENOIDAL COMPOUNDS PRODUCED BY STREPTOMYCES

Haruo Seto, Hiroyuki Watanabe, Nobuyo Orihara
(Institute of Molecular and Cellular Biosciences, University of Tokyo)
Kazuo Furihata
(Division of Agriculture and Agricultural Sciences, University of Tokyo)

Several Streptomyces species were reported to biosynthesize terpenoidal compounds via the mevalonate pathway, while the biosynthesis of pentalenolactone, a common metabolite of Streptomyces, was explained by involvement of the non-mevalonate pathway disclosed recently. These findings suggest that the genus Streptomyces utilizes either one (or both) of two different pathways for the formation of isopentenyl diphosphate (IPP) depending on species.

To address this unusual issue in more detail, we have studied the biosynthesis of a primary metabolite, ubiquinone, and a secondary metabolite, naphterpin produced by Streptomyces aeriuvifer.

Labeling experiments using [6-2H2]glucose and [U-C6]glucose showed that most of the ubiquinone molecules was produced by the non-mevalonate pathway. On the other hand, naphterpin which was produced at later stage of the fermentation was mainly produced by the classical mevalonate pathway.

In addition, we have studied the biosynthesis of an unusual tetraterpenoid, longestin (KS-505) which is produced by Streptomyces argenteolus. It turned out that the producing organism possessed only the non-mevalonate pathway which was used for the formation of longestin.