Huperzine A の全合成

（東大院薬）
○小柴　隆宏、横島　聡、福山　透

【背景・目的】
(-)-Huperzine A (1)はヒカゲノカズラ科のトウゲシバ（Huperzia serrata）の葉より単離、構造決定されたリコポジウムアルカロイドである。本化合物は、強力かつ可逆的なアセチルコリンエステラーゼ阻害活性を有することから、記憶力の向上及び記憶減退の改善に効果があると考えられ、さらにアセチルコリンエステラーゼに対する選択性も高いためとより新規アルツハイマー病治療薬として注目を集めている。また、構造上の特徴として炭素原子のみからなるビシクロ[3.3.1]骨格を持ち、さらにピリドン骨格を有しているという点で合成化学的にも非常に興味深い化合物である。現在までに数例の全合成が報告されているが、その化学統合および重結合部位の異性異型制御の点などで満足のいくものではない。そこで我々は、この興味深い天然物のより効率的かつ立体選択的な合成経路の確立を目指し、全合成研究に着手した。

【逆合成解析】
我々の合成計画を以下に示す（Scheme 1）。(-)-Huperzine A (1)のピリドン部位、エチルデン部位は合成の終盤に構築することとし、その前駆体としてビシクロ化合物2を設定した。アミノ基は Curtius 転位により導入し、ビシクロ[3.3.1]骨格を3に対応する閉環メタセシスで構築しようと考えた。3のビニル基はエノン4に対する有機銅試薬の convex 面選択的共役付加により立体選択的に導入することとした。4はホモアリルアルコール5より誘導するものとし、5は既知化合物であるビシクロ化合物6のエーテル環の開裂、位置および立体選択的C-アルキル化により合成できると考えた。

Scheme 1

【鍵中間体2の合成】
まず、フラノン7とマレイン酸無水物8の Diels-Alder 反応により成績体9を得た（Scheme 2）。次に9の酸無水物部位をNaBH4により還元し酸処理することでラクトンへと変換し、続く水素添加反応により二重結合を還元することでラクトン6とし
た。6に対し2当量のKHMDを作用させたところ、まずエノレートを形成した後エーテル環が開裂し、さらにラクトンのγ位で脱プロトン化が進行することでジアニオン10が生成した。そのまま系中に1当量のメタリルプロミドを加えることで、ラクトンのα位でconvex側より選択的にアルキル化が進行し目的のC-アルキル化体5が得られたが、このとき先に生じたアルコキシドのアルキル化が副反応として問題となった。種々条件を検討した結果、添加物として1当量の18-crown-6を共存させておくことで副反応を抑えることができ、良好な収率で5が得られることを見出した。続いて、ホモアルリアルコール5の水酸基を利用した立体選択的エポキシ化を行った。種々の金属触媒を検討した結果、5がのパナジウム触媒を用いた際に最も良い結果を与えた6。エポキシアルコール11は、Swern酸化の条件下で水酸基の酸化に引き続きエポキシドの開環が進行し、α,β-不飽和ケトン4へと良好な収率で導いた。

Scheme 2

Reagents and conditions: (a) toluene, 91%; (b) NaBH₄, THF, 0 °C to rt; 6 N HCl, 0 °C to rt; (c) H₂, Pd/C, MeOH, 67% (2 steps); (d) KHMD (2.0 eq), 18-crown-6 (1.0 eq), THF, 0 °C; methallyl bromide (1.0 eq), -78 °C, 80%; (e) VO(OEt)₂, TBHP, MS4A, CH₂Cl₂, 0 °C to rt, 95%; (f) (COCl)₂, DMSO, CH₂Cl₂, -78 °C; i-Pr₂NEt, -78 °C to rt, 95%.

ここで有機鋼試薬の共役付加反応を行うべく、2級水酸基をTBSOTfを用いて保護しようとしたところ、ピシクロ[3.3.1]骨格を有するシリルエノールエーテル12が得られてきた。これは、TBSOTfがルイス酸として働くことでエノールを活性化した結果、二重結合から環化反応が進行したものと考えられる。生じたシリルエノールエーテルはTBAFを用いて脱シリル化を行うことで、良好な収率にて目的のケトン

Scheme 3

Reagents and conditions: (a) TBSOTf (1.5 eq), 2,6-di-tert-butylpyridine (2.0 eq), CH₂Cl₂, 0 °C, 59%; (b) TBAF, THF, 85%; (c) TIPSOTf (2 mol%), CH₂Cl₂, 0 °C, 65%.
13 へと変換した。さらに種々反応条件を検討した結果、塩基非存在下触媒量の TIPSOTf を作用させることで、シリルエノールエーテル体を経ることなく 1 段階にてケトン 13 へと変換できることを見出した。

【アミノ基の導入、ビリドンの構築】
コア骨格となるピシクロ[3.3.1]骨格の構築に成功したので、続いて窒素原子の導入を行った (Scheme 4)。13 の 2 級水酸基を MOM 基で保護し 14 とした後、塩基性条件下ラクトンの加水分解によるカルボン酸への変換を試みたが目的物は得られなかった。そこで 1 当量の水酸化カリウム存在下チオフェノールを作用させたところ、カルボン酸 15 を得ることに成功した。次に 15 に対して DPPA を用いた Curtius 転位反応を行い、生じたイソシアネート 16 をメタノールで処理することでメチルカーベレート 17 へと変換し、良好な収率で窒素原子を導入した。続いてビリドン骨格構築への足がかりとして、α,β-不飽和ケトンへと変換した。すなわち、17 のスルフィド部位を 1 当量の mCPBA によりスルホキシド 18 へと酸化した後、トルエン加熱還流条件下 β 脱離させることで α,β-不飽和ケトン 19 とした。

Scheme 4

---

Reagents and conditions: (a) MOMCl, i-PrNEt, TBAI, THF, reflux, 93%; (b) KOH (1.0 eq), PhSH (1.0 eq), MeOH, reflux, 90%; (c) DPPA, Et,N, benzene; evaporation; benzene, reflux; MeOH, reflux, 89%; (d) mCPBA (1.0 eq), CH2Cl2, 0 °C; (e) K2CO3, toluene, reflux, 95% (2 steps).

ビリドン部位は、ビリジンからの酸化反応により構築できないかと考えた(Scheme 5)。まず 19 をブチルビニルエーテル中加熱還流することで、1:1 のジアステレオマー混合物としてジヒドロビリラン 20 を得た。続いて、20 をエタノール加熱還流中ヒドロキシアミン塩酸塩と反応させ、良好な収率でビリジン 21 へと変換した。この際、逆に存在する塩酸により同時的に MOM 基も除去され、21 はアルコール体として得られるに至った。

Scheme 5

---

Reagents and conditions: (a) n-butyl vinyl ether, reflux, 90% (α:β=1:1); (b) NH2OH·HCl, EtOH, reflux, 88%.
られた。この後、ビリジンをピリドンへと変換する為に種々条件の検討を行ったが、二重結合存在下ピリジンからピリドンへの酸化が困難だったため、本ルートを断念した。

そこで、ピロンを形成した後ピリドンへ変換しようと考えた(Scheme 6)。19 に対してスルフィニルアミドを Michael 付加させケトアミド 22 とした後、トルエン加熱還流の条件に付したところ、環化及びスルフィン酸の脱離が一挙に進行し、ピロン 23 を得た。23 は、アンモニア水中加熱することで容易にピリドン 24 へと変換でき、得られた 24 は炭酸銀存在下ヨードメタンを作用させ 2-メトキシピリジン 25 として保護した。

Scheme 6

Reagents and conditions: (a) Me₂NCOCH₂S(O)Ph, t-BuOK, THF, 0 °C; (b) toluene, reflux, 68% (2 steps); (c) NH₃aq, reflux, 60%; (d) Mel, Ag₂CO₃, CHCl₃, reflux, 79%.

【(±)-Huperzine A の全合成】

最後にエチリデン基の導入を行った(Scheme 7)。25 の MOM 基の除去は TMSI を用いた際に速やかに進行し、生じたアルコールを Swern 酸化の条件に付することでケトン 26 とした。エチリデン基構築に Wittig 反応を用いると望みと反対の立体化学を有する化合物が得られることが報告されていたので、アリルアルコールの転位により二重結合の立体制御できないかと考えた。まず 26 に対して、ビニリチウムを
付加させることでアリルアルコール27へと変換した。得られた27を塩化チオニールで処理したところ、ジアステレオ混合物27から望みの幾何異性を有するアリルクロリド28が単一化合物として得られた。これは水酸基が塩化チオニールにより活性化された際に、ビニル基がメチルカーバメートとの立体障害を避けるように配置することで目的の立体化学を選択的に構築できたものと考えられる。28のクロロルはLiBHEt₃を用いて還元的に除去し、エチレレンジン29へと変換した。最後に、TMSIを用いて脱保護することでラセミ体のHuperzine A (1)の全合成を達成した。

【光学活性体の合成に向けて】
ラセミ体での合成経路を確立できたので、光学活性体の合成に向けた検討を行った（Scheme 8）。光学活性体の合成に、合成の序盤に光学活性なラクトン6を合成すればよい。Diels-Alder反応成績体9に対してBolmらにより報告されているメソ体の酸無水物に対する不斉非対称化を適用することとした。すなわち、酸無水物9に対して1当量のキニン、あるいはキニジンおよびベンジルアルコールを作用させ、エナンチオ選択的に開環することでそれら光学活性なモノカルボン酸30が得られる。得られた30に対して混合酸無水物を経由したカルボン酸選択的還元を行い、酸性条件下還元することでラクトンを形成し、最後に二重結合を水素添加にて還元することで目的の光学活性ラクトン(−)-6を93% eeで合成した。現在(−)-6を用いて更なる変換を行い、光学活性体の合成を行っている。

Scheme 8

Reagents and conditions: (a) quinine (1.1 eq; for (−)-6) or quinidine (1.1 eq; for (+)-6), BnOH (3.0 eq), toluene, −55 °C; (b) CICO₂Et, Et₃N, THF, 0 °C; filtration; NaBH₄, MeOH; (c) H₂, Pd/C, MeOH, (−)-6: 75%, 93% ee (3 steps), (+)-6: 74%, 99% ee.

【参考文献】
Total Synthesis of Huperzine A

Takahiro Koshiba, Satoshi Yokohama, Tohru Fukuyama
(Graduate School of Pharmaceutical Sciences, The University of Tokyo)

(−)-Huperzine A (1), a Lycopodium alkaloid isolated from Chinese folk medicine Huperzia serrata, has attracted a great deal of interests as a new drug for the treatment of Alzheimer's disease (AD) due to its potent, reversible and selective inhibitory activity against acetylcholinesterase (AChE). Because of the interesting biological activity coupled with the unique structural features, a bicyclo[3.3.1] skeleton and pyridone moiety, we initiated our efforts on the total synthesis of this fascinating molecule. Herein, we describe a total synthesis of huperzine A (1) featuring a unique cation-olefin cyclization.

Our synthesis commenced with a construction of the bicyclo[3.3.1] core skeleton. Diels-Alder reaction between furan and maleic anhydride provided anhydride 9. Reduction of the anhydride followed by acidic work-up gave the lactone, which was subjected to hydrogenation to furnish lactone 6. The chemo-, regio-, and stereoselective alkylation of 6 was accomplished by treatment with two equivalents of KHMDS to generate dianion 10, which was alkylated with methallyl bromide to give homoallyl alcohol 5. A vanadium-catalyzed epoxidation of 5 gave epoxyalcohol 11, which was converted into α,β-unsaturated ketone 4 by means of Swern oxidation. Upon treatment with TBSOTf in the presence of base, 4 underwent unexpected cyclization to give silyl enol ether with bicyclo[3.3.1] skeleton, which was desilylated to provide ketone 13. More conveniently, ketone 13 was obtained by treatment of 4 with a catalytic amount of TIPSOTf in one step.

We next focused on introduction of the amino functionality. After protection of the secondary alcohol with a MOM group, the lactone in 14 was opened by treatment with 1 equivalent of PhSK. The resulting carboxylic acid 15 was converted to methyl carbamate 17 via Curtius rearrangement. Subsequent treatment with mCPBA followed by β-elimination of sulfoxide provided the desired α,β-unsaturated ketone 19.

Construction of the pyridone moiety was performed via a pyrone. After Michael reaction of sulfynil amide to 19, ketoamide 22 was converted to pyrone 23 in refluxing toluene. Treatment of 23 with aqueous NH3 under reflux gave pyridone 24 which was protected as its 2-methoxypyridine 25.

Toward a total synthesis of huperzine A (1), we investigated the introduction of the ethyldiene moiety. After cleavage of the MOM group, the resulting alcohol was oxidized by Swern oxidation. Since Wittig reaction is known to give the wrong stereochemistry, ketone 26 was converted into allyl chloride 28 via a two-step procedure including addition of vinylolithium and treatment with SOCl2. Reduction of allylic chloride with LiBHEt3, followed by demethylation with TMSI afforded huperzine A (1).

Optically active lactone 6 could be obtained via an asymmetric opening of anhydride 9 using quinine according to the Bolm's procedure. Synthesis of (−)-huperzine A (1) is currently under way.