P-39

海洋由来細菌 Bacillus subtilis が生産する
モルホリン骨格含有新規イソクマリン
bacilosarcin 類の構造

（富山県大 a、サントリー生有研 b、佐賀大 c）
　○安住美亜 a、小川憲一 a、藤田剛 b、
　竹下道範 c、藤田隆治 a、古米保 a、五十嵐康弘 a

天然物から植物生長制御活性を有する農薬のリード化合物探索の過程で、マイワシ (Sardinops melanosticta) の消化管内容物より分離した細菌 Bacillus subtilis の代謝産物から既知イソクマリン amicoumacin A, B および C と、ムールホリン骨格を含有する新規イソクマリン bacilosarcin A (1) と B (2) を単離した。これらの化合物の平面構造は各種 NMR 分析によって、絶対立体配置は NMR 解析と化学変換によって決定した。

微生物由来イソクマリン化合物の特徴は、ジヒドロキマリンの 3 位にイソロイシン由来と推定されるアミノ基を含む置換基が存在することである。そのような微生物代謝物としては、baciphelacin、amicoumacin1、xenocoumacin、Y-05460M-A、PM-94128、Sg 17-1-4 などが報告されている。今回構造決定した 1 は、そのイソクマリン骨格に天然物、合成化合物いずれにおいても前例の無い 3-oxa-6,9-diazabicyclo[3.3.1]nonane 環を有する。また、2 に見られる 2-ヒドロキシモルホリンは天然物に稀な構造であり、これまで恒例 (convolutamin E2, akashin C3) しか報告されていない。

Fig 1. Bacilosarcin A と B の構造

1. 抽出および精製

B. subtilis TP・B0611 株の培養液 (5L) に等量の 1-ブタノールを加え、一時間振盪し（200 回転/分）抽出した後、有機層を減圧濃縮し 4.3g の粗抽出物を得た。粗抽出物は n-ヘキサンとメタノールによる分配で脱脂し、メタノール層を濃縮して 3.8g の茶色油状物質を得た。これを CH3CN-KH2PO4 buffer (pH 3.5) の溶媒系で逆相カラムクロマトグラフィーによって分画し、溶出液は濃縮して水層を 1-ブタノールで抽出後濃縮した。ヒエ種子を用いたバイオアッセイにおいて植物生長阻害活性を示した画分を逆相 HPLC 分取により精製し、植物生長阻害活性物質として無色粉末状の 1 (9.3 mg) と 2 (6.3 mg) を得た。
2. 構造解析
(1) 平面構造
1 は高分解能 EIMS により [M]+ が m/z 491.2272 に観測され、1H-NMR および
13C-NMR データと合わせて分子式を C24H33N3O8 (calcd 491.2267) と決定した。
13C-NMR と DEPT では脂肪族炭素が 8 個、酸素原子または窒素原子に結合した炭素が 7 個、芳香族炭素が 6 個、カルボニル炭素が 3 個観測された（Table 1）。IR スペクトルでは水酸基 (3265 cm⁻¹) とカルボニル基の吸収 (1655 cm⁻¹) が観測された。
また、UV スペクトルでは amicoumacin に類似した吸収極大（λmax 206, 247, 314 nm）が見られたことから、1 はジヒドロイソマリシン骨格を有すると推定された。

<table>
<thead>
<tr>
<th>Position</th>
<th>δH mult (J in Hz)a</th>
<th>δCb</th>
<th>δH mult (J in Hz)a</th>
<th>δCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>169.7</td>
<td></td>
<td>170.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.59 (ddd, 13.2, 2.7, 2.5)</td>
<td>81.2</td>
<td>4.54 (ddd, 12.9, 2.5, 2.4)</td>
<td>81.3</td>
</tr>
<tr>
<td>4</td>
<td>3.09 (dd, 16.4, 13.2)</td>
<td>30.5</td>
<td>3.21 (dd, 16.4, 13.2)</td>
<td>29.4</td>
</tr>
<tr>
<td>5</td>
<td>2.84 (dd, 16.4, 2.7)</td>
<td>118.2</td>
<td>2.85 (dd, 16.4, 2.4)</td>
<td>118.6</td>
</tr>
<tr>
<td>6</td>
<td>6.71 (d, 7.3)</td>
<td>136.6</td>
<td>6.50 (d, 7.3)</td>
<td>118.6</td>
</tr>
<tr>
<td>7</td>
<td>7.42 (dd, 8.3, 7.3)</td>
<td>116.3</td>
<td>7.37 (dd, 8.6, 7.3)</td>
<td>136.5</td>
</tr>
<tr>
<td>8</td>
<td>6.89 (d, 8.3)</td>
<td>116.3</td>
<td>6.97 (d, 8.6)</td>
<td>116.0</td>
</tr>
<tr>
<td>9</td>
<td>98.1</td>
<td></td>
<td>108.1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>139.4</td>
<td></td>
<td>140.6</td>
<td></td>
</tr>
<tr>
<td>1'</td>
<td>172.3</td>
<td></td>
<td>172.9</td>
<td></td>
</tr>
<tr>
<td>2'</td>
<td>0.96 (d, 6.4)</td>
<td>21.8</td>
<td>0.83 (d, 6.6)</td>
<td>21.6</td>
</tr>
<tr>
<td>3'</td>
<td>0.97 (d, 6.3)</td>
<td>23.1</td>
<td>0.80 (d, 6.6)</td>
<td>23.3</td>
</tr>
<tr>
<td>4'</td>
<td>1.66 (m)</td>
<td>24.8</td>
<td>1.72 (m)</td>
<td>24.8</td>
</tr>
<tr>
<td>5'</td>
<td>1.76 (ddd, 13.6, 10.2, 5.1)</td>
<td>41.0</td>
<td>1.85 (ddd, 13.7, 11.5, 4.4)</td>
<td>39.0</td>
</tr>
<tr>
<td>7'</td>
<td>4.39 (ddddd, 12.2, 10.0, 4.6, 2.4)</td>
<td>49.6</td>
<td>4.64 (m)</td>
<td>49.1</td>
</tr>
<tr>
<td>8'</td>
<td>0.94 (d, 9.8)</td>
<td>68.4</td>
<td>4.90 (d, 8.6)</td>
<td>71.5</td>
</tr>
<tr>
<td>9'</td>
<td>4.10 (dd, 9.8, 2.4)</td>
<td>72.5</td>
<td>5.47 (dd, 8.6, 2.4)</td>
<td>69.5</td>
</tr>
<tr>
<td>10'</td>
<td>3.50 (dd, 6.6, 2.4)</td>
<td>47.9</td>
<td>4.74 (m)</td>
<td>51.3</td>
</tr>
<tr>
<td>11'</td>
<td>2.62 (d, 18.3)</td>
<td>30.3</td>
<td>3.57 (dd, 16.1, 8.0)</td>
<td>29.4</td>
</tr>
<tr>
<td>12'</td>
<td>2.45 (dd, 18.3, 6.6)</td>
<td>3.44 (dd, 16.1, 5.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13'</td>
<td>1.33 (s)</td>
<td>21.3</td>
<td>1.43 (d, 6.8)</td>
<td>14.5</td>
</tr>
<tr>
<td>14'</td>
<td>69.7</td>
<td>3.72 (q, 6.8)</td>
<td>52.2</td>
<td></td>
</tr>
<tr>
<td>15'</td>
<td>98.0</td>
<td></td>
<td>95.7</td>
<td></td>
</tr>
<tr>
<td>16'</td>
<td>1.31 (s)</td>
<td>23.8</td>
<td>1.45 (s)</td>
<td>25.0</td>
</tr>
<tr>
<td>8-OH</td>
<td>10.69 (s)</td>
<td></td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>6'-NH</td>
<td>6.98 (d, 10.0)</td>
<td>9.15 (d, 9.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8'-OH</td>
<td>3.80 (br.s)</td>
<td></td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>12'-NH</td>
<td>6.46 (br.s)</td>
<td>9.19 (br.s)d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15'-OH</td>
<td>3.80 (br.s)</td>
<td></td>
<td>8.43 (br.s)d</td>
<td></td>
</tr>
</tbody>
</table>

a recorded at 400 MHz. b recorded at 100 MHz. c ND = not detected. d 12'-NH₂
\[^1H \text{ と } ^{13}C \text{ NMR データ, } ^1H-^1H \text{ COSY, TOCSY, NOESY, HMQC 及び HMBC 相関より} \]

1 の部位構造が明らかになった (Fig. 2)。部分構造 A については H-5 と H-7 から C-9 への HMBC 相関、H-6 から C-8 と C-10 への相関、8-OH からの C-7 と C-8 への相関により、C-8 に結合した水酸基と C-9、C-10 の配置を決定した。H-1' と H-2' のメチル基からはそれぞれもう一方のメチル基と C-3'、C-4' に HMBC 相関が見られた。H-4' と H-5' 間には COSY 相関が見られ、また H-5' は H-3 と XH プロトン (X = ヘテロ原子、\(\delta H \) 6.98) 間にも COSY 相関が観測された。XH は C-5' の化学シフト値（\(\delta c 49.6 \)) と、このプロトンより C-7' へと HMBC 相関が見られることから NH であると決定した。H-4 から芳香族炭素 C-5、C-9、C-10 への HMBC 相関により C-4 と C-10 の結合法が示された。以上のことから、UV スペクトルより予測されたジヒドロイソクマリン骨格が明らかになった。

部分構造 B の構造解析は H-11' のメチレンプロトンから開始した。このプロトンと H-10' 間には COSY 相関が見られ、C-9' と C-10' には HMBC 相関が見られた。さらに COSY と TOCSY 相関により H-9' と H-10'、H-9' と H-9、H-8' と 8'-OH 間のつながりが明らかとなった。C-9' (\(\delta c 72.5 \)) と C-10' (\(\delta c 47.9 \)) は化学シフト値より、それぞれ酸素原子と窒素原子が結合していると示唆された。最後に H-8' と H-9' より C-7' へ HMBC 相関が見られることよりこのカルボニル炭素の位置が決定された。部分構造 A と B は 6'-NH から C-7' へ HMBC 相関と 6'-NH と H-8' 間の NOESY 相関より結合され、部分構造 C が確定了。

部分構造 D には二個の singlet のメチル基と二個の四級 sp^3 炭素が含まれていた。これらの炭素は二個のメチル基 (H-13' と H-16') の両方から C-14' と C-15' へ HMBC 相関が観測されたことから図のように結合していることが分かった。C-15' に水酸基が結合しているときは 15'-OH より C-14' と C-15' 及び C-16' への HMBC 相関が観測されたことから決定した。部分構造 C と D は 12'-NH から C-14' へ、また H-10' から C-14' へ HMBC 相関より二個の窒素原子を介して C-14' に結合した。最後に C-15' のヘミアセタールに特徴的な化学シフト値（\(\delta c 98.0 \)) から C-9' と C-15' のエーテル結合が明らかとなり、1 の平面構造を図のように決定した。

2 の高分解能 FABMS の結果からこの化合物の分子式は C_{24}H_{35}N_{3}O_{8} (obsd [M+H]^+ 1147.2497, calcd M+H^+ 1494.2497) であり、1 との違いは水素原子二個に相当した。NMR スペクトル上、1 では singlet であったメチル基が 2 では doublet (H-13', \(\delta H 1.43 \)) であり、また quartet のメチン (H-14', \(\delta H 3.72 \)) とこのメチル基の間に COSY 相関が見られ、H-9' から C-15'、H-10' から C-14'、H-13'
から C-14’ と C-15’, H-16’ から C-14’ と C-15’ に HMBC 相関が見られた。以上より、2 は C-14’ と N-12’ 間の C-N 結合が開環した構造であることが明らかとなった。

(2) モルホリン環周辺の立体構造

1のビシクロ環の相対立体配置は H-1H カップリング定数と NOESY 相関から決定した (Fig. 3)。H-8’ と H-9’ 間のカップリング定数は 9.8Hz と大きく、H-9’ と H-10’ 間のカップリング定数は 2.4 Hz と小さいことから、それぞれアキシャルとエクアトリアルに配向していることが明らかとなった。C-11’ のメチレン基がアキシャルに配向していることは、H-8’ と H-11’ (δ H 2.45) 間に NOESY 相関が観測されたことから決定した。H-16’ のメチル基がエクアトリアルに配向していることは H-9’ とこのメチル基との間に NOE が観測されなかったことから決定した。

2においても 1と同様の NOESY 相関が見られた。また、カップリング定数は H-8’, H-9’間が 8.6Hz、H-9’ と H-10’ 間が 2.4 Hz であることと、H-11’ とアキシャルの H-14’ 間に NOESY 相関が見られることからモルホリン環はイス型配座であると決定した。

(3) Bacilosarcin から amicoumacin への変換

Bacilosarcin は amicoumacin と同一の生産菌による代謝物であることから共通部分の絶対構造は同一であると推定された。1の C-15’ ヘミアセタール炭素と C-14’ の 2つの窒素原子が結合した炭素は、いずれも酸性条件下で加水分解されることを予想された。実際に、1をトリフルオロ酢酸 (TFA) で処理した結果、amicoumacin B (4) と amicoumacin C (5) が生じた (Fig. 4)。分解反応で得た amicoumacin B は、天然物と同一の CD スペクトルを示したことから、1 の amicoumacin と共通部分の絶対配置は amicoumacin と同一であり、したがって 1 の絶対配置を Fig. 1 のように決定した。1はピアセチル部分が加水分解されることにより 3 へと変換され、3 は酸触媒によりラクトン化されて 5 に、5 はラクトン環が環状化され、6 が生成した。
クトン環が加水分解されることで 4 へと変換されたものと推定された（Fig. 5）。同様に 2 を TFA 処理により分解すると、1 と 3 と 5 の混合物がえられたことより、2 はおそらくイミン中間体を経て 1 へと変換され、その後 1 と同様に反応が進行したと考えられる。2 の分解により生成した amicoumacin B の CD スペクトルも天然の amicoumacin B に一致したことより、2 の絶対配置もこれらの化合物と同じであると推定された。

![Figure 5. Bacilosarcin から amicoumacin へ変換](image)

Bacilosarcin A と B は 50 μM でヒエの幼芽伸長をそれぞれ 82%、7% 阻害した。また、amicoumacin A と B はそれぞれ 98%、13% 阻害した。これらの amicoumacin による植物生長阻害はグルタミンやアスパラギンなどのアミノ酸の添加によりキャンセルされたことから、アミノ酸生合成の阻害剤であることが推定された。

謝辞
LC-MS および 600M Hz の NMR 測定を行って頂きました田辺三菱製薬の池田義孝博士に感謝します。

[参考文献]
Bacilosarcin A and B, Novel Bioactive Isocoumarins with Unusual Heterocyclic Cores from the Marine-Derived Bacterium

Bacillus subtilis

Miwa Azumi, a Ken-ichi Ogawa, a Tsuyoshi Fujita, b
Michinori Takeshita, c Tamotsu Furumai, a Yasuhiro Igarashi a
(aToyama Prefectural University, bSuntory Institute for Bioorganic Research, cSaga University)

There is substantial interest in discovering new lead molecules from natural products for agricultural application including plant growth regulators. In this study, the marine-derived bacterium *Bacillus subtilis* was found to produce two new isocoumarins, bacilosarcins A (1) and B (2) as well as three previously reported isocoumarins, amicoumacins A, B, and C.

Isocoumarin-type metabolites from microorganisms are characterized by the amino-containing substituent at 3'-position in the dihydrocoumarin core. There have been several such isocomarin compounds as baciphelacin and amicoumacins isolated from bacteria of the genus *Bacillus*. The structures of 1 and 2 were assigned on the basis of NMR analysis and chemical conversions. 1 possesses an unprecedented 3'-oxa-6,9-diazabicyclo[3.3.1]nonane ring system whereas 2 has a 2-hydroxymorpholine substructure that is rare in nature. The new compounds showed plant growth inhibitory activity against barnyard millet. We herein describe the isolation, structure elucidation, absolute stereochemical assignment, and biological activity of 1 and 2.