抗腫瘍性抗生物質 C-1027 クロモフォアの全合成研究

（東北大院理）
○佐藤栄、田村幸男、平井啓一朗、平川文弥、平間正博

1988 年に大鵬薬品の大谷らにより streptomyces globisporus C-1027 より単離された抗生物質である C-1027 は非常に強い抗腫瘍性を発揮するクロモフォア 1) とそれを包接して安定化するアポタンパク質との 1:1 複合体である。その活性発現は、1 の 9 員環共役エンジンの正宗-Bergmann 型芳香環化反応に由来すると考えられている。即ち、9 員環エンジンと常温で平衡下にある p-ベンザインピラジカル 2) は、DNA（水素供与体）より水素を引き抜いて芳香環化体 3) へと分解する。ラジカルを生じた腫瘍細胞 DNA 2 重鎖は、酸化分解を受けて不可逆的に切断される。1 は、高度に歪んだ 9 員環エンジンにマクロライドが縮環し、更にアミノ糖とベンゾキサジンエステルが結合した複雑な分子構造を有しており、未だその全合成は達成されていない。

(1) アグリコン保護体の合成

以前、9 員環ジンマクロライド 4 の 4 位水酸基を p-トリフロロメチルフェノールで保護した保護体 6 を合成した。保護体 6 を SmI2 と順次反応させることで、アミノ基を直接保護体 6 の N 位に導入した保護体 7 を得た。さらに、7 を MeCl で処理することで、保護体 8 を得ることができた。Scheme 1.

Scheme 1.
過剰量（ルへ応じたが進む）を示した後、4,5 位間にオレフィンを導入して 9 員環エンジンへと誘導できることを報告した。しかし、13 位にベンゾキサジン部を導入した上で還元的オレフィン化を試みたところ、ベンゾキサジン上のエキソアトロンの還元が競争的に進行した（Scheme 1）。そこで、エキソアトロンを水和型にマスクした 7 に対して還元的オレフィン化を行えばこの問題を解決出来るものと考えた。ヘミアセタールは、メチル化により容易にエキソアトロンへと誘導可能と期待される。Scheme 2 にアリコン保護体の合成を示す。4 に対し TBAF を低温で作用させ、4 位の TES エーテルのみを選択的に開裂した。得られた 3 級アルコールと、ヘミアセタール部を TBS 基で保護したベンゾキサジン部 9 を山口法により総合すると定量的にエステル 10 が得られた。10 のジオステレオマー比は 3:1 であった。これを 40 ℃で DDQ 処理することにより、MPM エーテルの酸化的開裂とエステルの転位が進行し、13 位水酸基上にベンゾキサジン部が結合した 11 を得ることが出来た。生じた 4 位水酸基は p-トリフルオロメチルベンゾイルクロライド (TFBzCl) を用いて対応するエステルへと誘導した。次に臭化ジメチルホウ素 (Me2BBr) をルイス酸として用いて 11 位アリルアルコール上の MOM 基および アミノ基上の Boc 基の一方を除去した。アリルアルコールを Grieco・西沢らの手法によりセレノ基へと変換して 12 へと誘導した後、過酸化水素で処理したところシクロペンタジエン骨格を構築することができた。最後に低温での TBAF 処理によりベンゾキサジン上のヘミアセタールを再生し、エンジン前駆体 13 へと導いた。

13 に対し当研究室で開発した還元的オレフィン化の条件を、すなわち THF 中で過剰量 (3-6 eq) のヨウ化サマリウムを用いた還元を試みたが、期待に反して反応は

Scheme 2. Reagents and conditions: (a) TBAF, THF, -80 ℃, 74%; (b) 9 (3 eq), 2,4,6-trichlorobenzoylchloride, DMAP, Et3N, CH2Cl2, 99% (major 75%, minor 24%); DDQ, 1,2-dichloroethane/H2O (1:3), 40 ℃, 80%; (d) TFBzCl, DMAP, CH2Cl2, 93%; (c) Me2BBr, CH2Cl2, -90 ℃ then PPTS, MeOH, 83%; (f) o-NO2PhSeCN, n-Bu3P, 44%; (g) aq. H2O2, THF, 0 ℃, 86%; (h) TBAF, THF, -78 ℃, 80%
全く進まず、原料の 13 がほぼ定量的に回収された。検討の結果、メタノールやトリフノラクトノールの添加により反応が促進されることが分かり、Scheme 3 に示すメタノールを添加した条件により 9 員環エンジンを形成することが出来た。得られたエンジンはゲルろ過の後、単離することなく溶媒を重塩化メチレンに置換し、大過剰のメシルクロライドとトリエチルアミンで処理するとヘミアセタールのメシル化と同時に脱離が進行し、ベンゾキサジン部のエキソオレフィンが導入されたアグリコン保護体 14 が得られた。14 は HPLC (YMC-pack SIL-06)での精製が可能であり、重塩化メチレン中で 1H NMR スペクトルを測定し、その構造を確認した。

また、ここに水素供与体として 1,4-シクロヘキサジエンを添加して遮光条件下 5℃で 7 時間反応を行ったところ、正規バーグマン型の芳香環化反応が進行し、芳香環化体 15 が 13 より 30％の収率で得られた。一方、精製した 14 についてその半減期を測定すると、重塩化メチレン中での半減期は 25℃で約 7 時間と比較的長いものであり、充分に取り扱いが可能であることも併せて判った。以上、アグリコン保護体の初めの合成を達成し、極めて不安定と予想された C-1027 クロモフォア型の 9 員環エンジンが取り扱い可能であることを明らかに来た 5)。

(2) C-1027 クロモフォア (1) の合成

次に、1 の全合成の完成に向け、アミノ糖部の導入を検討した。保護基を再吟味した 19 をグリコシルアクセプターとして合成した (Scheme 4)。まず 4 の MPM エーテルを酸化的に開裂して 16 を得た。ヘミアセタールをパラフェニルベンジル (PPB) 基で保護したベンゾキサジン 17 を山口法により総合した後、低温下、TBAF 処理により 4 位 TES 基のみを選択的に除去して 18 へと誘導した。水酸基を TFBr 化した後、常法により 1 位にセレノ基を導入、9 位の TES 基を除去してグリコシルアクセプター 19 を得た。Schmidt 法によりトリクロアセトイミドデキサ 20 を連続させ 6)、3 級水酸基のペーテを選択的なグリコシル化に成功した。その後、溶媒はトルエンで高選択で、グリコシル体 21 が収率 64%（原料回収 26%）で生成した。

更に、エンジン形成後の脱保護に向け保護基を変換した。21 を過酸化水素で処理してシクロペンタジェンを構築後、フェノール性水酸基の保護基を MOM 基から 2 工程で TBS 基へと変換して 22 を得た。また アミノ基については Boc 基を大船法 7)により除去した後、改めて Fmoc 基によって保護した。更にベンゾキサジン部の PPB 基をルイス酸により除去して 23 を得ることが出来た。モデル実験 (8) の条件同様、還元的オレフィン化後、速やかに脱水処理し、クロモフォア保護体 24 の合成
Scheme 4. Reagents and conditions: (a) DDQ, CH₂Cl₂/H₂O (2:1), 99%; (b) 17 (2 eq), 2,4,6-trichlorobenzoyl chloride, DMAP, Et₃N, toluene, 95%; (c) TBAF, THF, -80 °C, 99%; (d) TFBzCl, DMAP, CH₂Cl₂, 97%; (e) Me₂BBr, CH₂Cl₂, -80 °C then PPTS, MeOH, 77%; (f) p-No₂PhSeCN, n-Bu₃P, THF; (g) TBAF, THF, -60 °C, 64% (2 steps); (h) 20 (6 eq), BF₃·OEt₂, MS4A, -78 °C, 3 h, 64% (26% recovery of 19); (i) aq. H₂O₂, THF, rt, 82%; (j) Me₂BBr, CH₂Cl₂, -85 °C to -45 °C, 74%; (k) CF₃CONMeTBS, Et₃N, CH₂CN, 82%; (l) TBSOTf, 2,6-lutidine, CH₂Cl₂ then PPTS, MeOH; (m) FmocCl, NaHCO₃, 1,4-dioxane, H₂O (n) BCl₃, -85 °C to -50 °C, 68% (3 steps); (o) SmI₂, MeOH, THF, -20 °C, 30 min; (p) MsCl, Et₃N, CH₂Cl₂, 0 °C to rt 10 min; (q) TBAF, THF-d₈, 0 °C, 30 min; (r) 1,4-cyclohexadiene.
に成功した。エンジン 24 は、HPLC による精製が可能であった。最後に、TBAF を用いて全てのシルエーテル型の保護基と Fmoc 基の除去を試み、クロモフォア 1 の生成を ESI-MS (HRMS) により確認することが出来た ([M+H]* calcd. 844.2479, found 844.2462)。さらに 1 を精製せずに、水素供与源として 1,4-シクロヘキサジエンを加えたところ、芳香環化体 25 の生成を質量分析により確認した。一方、還元的オレフィン化によりエンジンを形成してから、直ちに 1,4-シクロヘキサジエンを添加して芳香環化させた後、エキソオレフィンを導入し、保護基を除去した (o→r →p→q)。単離した 25 の 1H NMR スペクトルは、天然物の 25 と完全に一致した。更に、1 の単離を検討中である。

謝辞
天然物 (1, 25) をご恵与頂いた大鵬薬品（株）の大谷敏夫博士に感謝いたします。

参考文献
Synthetic Study of Antitumor Antibiotic C-1027 Chromophore

Itaru Sato, Yukio Tamura, Keiichiro Hirai, Fumiya Hirakawa, Masahiro Hirama
(Graduate School of Science, Tohoku University)

C-1027 is a potent antitumor chromoprotein antibiotic. It is composed of an apoprotein and a labile 9-membered enediyne chromophore 1. The C-1027 chromophore 1 quickly aromatizes via Masamune-Bergman cyclization at ambient temperature, generating p-benzyne biradical 2 that exerts its biological activity by abstracting hydrogen from DNA. The chemical instability and the complex architecture distinguish 1 as a challenging target for the total synthesis. We report a total synthesis of the protected aglycon and the chromophore 1.

A key feature of our synthesis is construction of the nine-membered enediyne from the nine-membered diyne via the reductive olefination of vicinal diol derivative. First, we examined the reductive olefination in the presence of a benzoxazine moiety and synthesis of the protected aglycon 15. As shown in Scheme 2, the adequately protected benzoxazine moiety 9 was condensed with readily prepared nine-membered diyne 4. The product 10 was converted to 13, which is the suitable precursor of the reductive olefination. The reduction of 13 with samarium iodide was successful to afford the protected aglycon 15 via dehydration of hemiacetal using a mesylation-elimination sequence.

Then, we attempted the total synthesis of 1. Highly diastereoselective glycosylation under Schmidt conditions enabled preparation of 23 (Scheme 4). The reductive olefination of 23 and subsequent dehydration also worked well to give the protected chromophore 24. Finally, formation of 1 was confirmed by ESI-MS (HRMS) after global deprotection with TBAF.