アザジラクチンの形式不斎合成

(東大院農生科)
○森 直紀、伊藤大輔、北原 武、森 謙治、渡邉秀典

アザジラクチン(1)は1968年にMorganらによってインドセンダンの種子から単離されたリモノイドであり1、広範な種の昆虫に対して強力な摂食阻害活性および成長・変態阻害活性を有する。これまでに多くの研究グループにより本化合物の合成研究2が精力的に行われてきたが、その高度に官能基化された複雑な構造ゆえ、現在においても合成の報告は2007年のLeyらによるリレー合成一例3をもとにとりまとまっている。今回、我々は長年にわたる合成研究の結果、二例目となるアザジラクチン(1)の合成を達成したので報告する。

1. 逆合成解析

我々の合成計画をScheme 1に示す。アザジラクチン(1)はAより各種官能基変換により合成できると考えた。1の合成においては、非常に込み合ったC8-C14結合の構築が最大の難関とされている。そこで我々は、あらかじめC8-C14結合に相当する結合をアレンとして導入しており、タンデム型ラジカル環化反応(B→A)を用いて効率的に骨格を構築しようと考えた。ラジカル環化前駆体Bは左右ユニットCとDから導くこととした。

![Scheme 1](image)

2. 左側ユニットの合成の背景

左側ユニットの基本骨格の構築には分子内Diels-Alder反応を用いることとした。実際に行った数多くの検討の中から一例をあげて説明する(Scheme 2)。ビロンの4位にかさ高い置換基(Cl)を導入した2を用いれば、Diels-Alder反応においてはエンド型付加体3を優先して与え、そこから5へと変換できることを期待した。ところが実際にはエキソ型付加体4が優先して得られる結果となった。次に基質を変更し、ビロンの6位にメチル基を有する6を用いて検討を行ったところ、今回はDiels-Alder
反応後速やかに脱炭酸が進行した 8 が得られることが判った。そこでこの脱炭酸しやすい性質を逆にとるべく、ピロンの 4 位にはプロパルギルオキシ基を導入することとした。実際に 7 を用いたところ、Diels-Alder 反応、脱炭酸により 9 を経た後さらに Claisen 転位まで進行した 10 が得られた。この方法により脱炭酸により失われた炭素をアレンとして補うことが可能となった。ただし、10 は C4 位の立体化学の二軸が必要であり、アルドール反応を行うべく 11 への変換を試みたが、シクロヘキセン環の酸化的開裂が困難であったことが判った。そこで酸化反応を容易にするためにピロン環にメトキシ基を導入することとし、12 を Diels-Alder 反応前駆体として設定し合成を開始した。

Scheme 2

3. Diels-Alder 反応-脱炭酸-Claisen 転位

Diels-Alder 反応前駆体のユニットとなる 18 と 21 の合成を Scheme 3 に示す。Carreira らにより報告されている不斉反応 3) に改良を加え、Jiang らにより開発されたリガンド 15 を用いることにより 13 と 14 から高鏡像体純度 (98% e.e.) で付加体 16 を得た。16 から 2 で工程でピニルスズ 17 へと変換後、(Z)-3-ヨードアクリル酸メチルとのカップリングによりジェノフィルとなるアルコール 18 を得た。一方、ピロンユニット 21 は既知化合物 19 により別途 5 工程で調製した。

Scheme 3
18と21をAgOTfを用いてエーテル化し、Diels-Alder反応前駆体22へと導いた（Scheme 4）。22をDMF中加熱するとDiels-Alder反応後、脱炭酸まで進行した23が得られた。23のTMS基を除去後、トルエン中で再度加熱還流しClaisen転位を進行させることで24を単一生成物として得ることができた。なお、本反応において末端アルキンをTMS基で保護していない場合、すなわち12を用いた場合は、Diels-Alder反応よりも先にClaisen転位が進行した25が優先して得られた。

4. A環の構築

BBr3を用いて24のメチルピニルエーテル部分を脱メチル化した（Scheme 5）。得られた25は重亜酸素を用いる酸化的開環反応6）と生じたカルボン酸のメチルエステル化により27へと導いた。27のアレンをアルデヒドへと変換後、Sn(OTf)27）を用いてアルドール反応を行うと、28が単一生成物として得られた。以上の変換によりC4位の立体化学の反転に成功し、正しい立体化学を有するA環を構築することができた。続いて28のケトン部分をMgBr2・Et2O存在下Morpholine・BH3を用いて還元すると、これまでに報告していた条件24）（t-BuNH2・BH3、CH2Cl2：29：43%、30：35%）よりも選択性が向上し、望みの29を優先して得ることができた。最後に29のジオール部分にp-メトキシペンゼンジベンジデンアセタール保護をかけ、TBS基で保護された水酸基を2工程でアルデヒドへと酸化し左側ユニット31（=C）を合成した。
5. 右側ユニットの合成

右側ユニットの合成は Nanda らにより報告されている既知化合物 32 の TBDDS もとし、最初に酢酸エチルとのアルドール反応を行ったが、生じた 3 級水酸基のベンジル基での保護が困難であったため、TBDPS 基を除去後ベンジリデンアセタールとして保護し 33 へと導いた。エステルの加水分解、二重結合のオゾン酸化の後、生じたヘミアセタール性水酸基を TBS 基で保護すると 3 つのジアステレオマーが生成し、その内 34 を主生成物として得た。続いて DIBAL 還元とメチル化により 35 へと導いた。検討の結果、ベンジリデンアセタールの還元的酸環により 36 を直接 36 へと導くことは難しいと判断し、3 工程の変換にて 36 へと導いた。36 から 3 工程で得られるメチルケトン 37 に対して TMS アセチルを付加させ、38 を主生成物として得た。これ以降は主生成物 38 を用い、3 級水酸基のアセチル化、シリル基の除去、フェニルセレノ基の導入を行い、右側ユニット 39 (= D) を合成した。また、39 と 3 以外の主生成物 40 は合成し、その後の変換の検討も行ったので併せて報告する予定である。

Scheme 6

6. 形式不斉合成

形式合成までの変換を Scheme 7 に示す。左右ユニット 31 と 39 をカップリング後、SN2' 反応によってメチル基を導入し 39 へと変換した。最適化した条件下、41 のタンデム型ラジカル環化反応を行ったところ、期待通り 1 の全炭素骨格を有する 42 (= A) を得ることができた。42 の 2-級水酸基を TMS 基で保護した後、Rubottom 酸化によりラクトン α 位に酸素供核基を導入し 43 とした。続いて、2 つのシリル基の除去、水酸基の酸化、メタノールによるケトラクトン部分の環の巻きかえの後、生じたヘミアセタール性水酸基をベンジル基で保護し 44 を得た。最後に p-メトキシベンジリデンアセタールを除去し、一方の水酸基に TBS 保護をかけることにより Ley らの合成中間体 45 へと導くことに成功した。この中間体より 9 工程でアザラクチン (1) への変換が可能であり、ここに 1 の形式不斉合成を達成するこ
Scheme 7

参考文献
 1512. (e) Veitch, G. E.; Beckmann, E.; Burke, B. J.; Boyer, A.; Maslen, S. L.; Ley, S. V.
 Angew. Chem. Int. Ed. 2007, 46, 7629. (f) Veitch, G. E.; Beckmann, E.; Burke, B. J.,
 Boyer, A.; Ayats, C.; Ley, S. V. Angew. Chem. Int. Ed. 2007, 46, 7633. (g) Nakagawa,
 1988, 44, 1603.
Formal Asymmetric Synthesis of Azadirachtin

Naoki Mori, Daisuke Itoh, Takeshi Kitahara, Kenji Mori, Hidenori Watanabe

(Graduate School of Agricultural and Life Sciences, The University of Tokyo)

Azadirachtin (1), which was isolated from the neem tree *Azadirachta indica* A. Juss (Meliaceae), exhibits potent antifeedant and growth inhibitory activities. Due to its complicated structure, only one total synthesis of 1 has been reported by the Ley group to date. Herein, we report the formal asymmetric synthesis of 1 by utilizing the tandem radical cyclization approach developed in our laboratory.

The Diels-Alder reaction – decarboxylation – Claisen rearrangement strategy was used to construct the basic structure of the left-hand segment (22→24). The product 24 was subjected to an oxidative ring-opening reaction and a subsequent aldol reaction to give 28 with the correct stereochemistry at C4-position. After a coupling of the left-hand segment 31 with the right-hand segment 39 prepared from the known compound 32, an SN2' reaction with methyl copper reagent afforded the allene 41. The key tandem radical cyclization reaction of 41 was realized by treatment with Bu3SnH and AIBN in DMF to give 42 in a moderate yield. The compound 42 could be converted into the Ley's intermediate 45 in 9 steps, resulting in the formal asymmetric synthesis of 1. Our synthesis which requires a longest linear sequence of 30 steps to the intermediate 45 is much more efficient than the Ley's synthesis (53 steps).