Pd触媒反応を鍵とした神経栄養因子様物質ジアジェフェニンの合成

(德島文理大薬) 原田研一, 今井顕子, 久保美和, 福山愛保

2002年に中国産シキミ（Illicium jiadifenigpi）から単離されたジアジェフェニン (1) は、高度に酸素官能基化された四環性カゴ型構造を有するセコブレジザン型セスキテルペンで、ヘミセタール部の平衡混合物として存在するビーム深い化合物である。1この構造的特徴に加え、ラット胎児大脳皮質由来初代培養神経およびPC12細胞に対する強力な神経突起伸展促進活性が見いだされたことからアルツハイマー病治療薬のリード化合物として期待されている。1,2このため、1は合成ターゲットとしても注目を集めることとなり、世界中で合成研究が盛んに行われてきた。2004年Danishefskyら2がカルボニル基のα位置換反応を基軸とする経路で1の初めての全合成を達成して以来、2011年にはTheodorakisら3により、続く2012年にはZhaiら4によってそれぞれ全合成が報告されている。このような背景のもと、我々はさらに効率的な合成法の開発を目指し、Pd触媒反応を適所に活用する独自の合成戦略でジアジェフェニンの合成研究を開始した。

ジアジェフェニンの逆合成解析

合成を開始するにあたり、Theodorakisの合成中間体2を合成前駆体とする逆合成解析をおこなった。(Scheme 1) ダイジェフェニンは、環接合部に四級炭素を含む四環性化合物であることから、如何に効率よく四級炭素を形成し、環構築をおこなうかが合成の鍵となる。本計画では、Pd触媒反応による四級炭素上の環構築を鍵として、Mizoroki–Heck反応によるA環形成とTsuji–Trost反応を応用したBC環の連続環化反応を特徴とする合成経路を企画した。BC環連続環化反応では、π-アリールPd錯体を経由するTsuji–Trost反応によりB環を構築後、系内で連続的にラクトン化させることで一挙にBC環を構築させる計画である。

Scheme 1. Retrosynthesis of jiadifenin.

Mizoroki–Heck反応によるA環構築

まず、Mizoroki–Heck反応による四級炭素形成を伴うA環構築を検討した。市販
の4-オキソピメリン酸ジエチル（3）をWittig反応で増炭後、LiAlH₄で還元し、ジオール体4を得た。2個の水酸基の一方をTBDPS基で保護したのち、もう一方の水酸基をSwern酸化後、Horner–Wadsworth–Emmons反応でプロモエステルを形成させ、5を調製した。（Scheme 2）

Scheme 2. Preparation of bromoester 5.

5に対してPd(OAc)₂−(o-tol)₃P–Et₃N触媒下各種溶媒を使用しMizoroki–Heck反応を検討した。（Table 1）溶媒として低極性溶媒のtolueneや1,4-dioxaneおよび非プロトン性極性溶媒であるDMFを使用した場合、反応が遅く低収率に留まったが、プロトン性溶媒のMeOHを使用すると劇的に反応性が向上し、定量的に6を得ることに成功した。本反応は、EtOHやt-BuOHなどのプロトン性溶媒でも反応は円滑に進行し、触媒量を10 mol %から5 mol %まで減量しても短時間で反応が完結し、高収率で目的物6を与えた。

Tsuji–Trost反応を応用したBC環連続環化反応

得られた6からTsuji–Trost反応の基質となる環状炭酸エステル16へ誘導した。6のエチルエステルを加水分解後、Weinrebアミドへ変換し8を得た。8のビニル基を

Scheme 3. Preparation of cyclic carbonate 16.

Table 1. Mizoroki–Heck reaction of 5.

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>Pd(OAc)₂</th>
<th>(o-tol)₃P</th>
<th>time</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toluene</td>
<td>10 mol%</td>
<td>20 mol%</td>
<td>8 h</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>CH₂CN</td>
<td>10 mol%</td>
<td>20 mol%</td>
<td>8 h</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>dioxane</td>
<td>10 mol%</td>
<td>20 mol%</td>
<td>8 h</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>DMF</td>
<td>10 mol%</td>
<td>20 mol%</td>
<td>8 h</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>MeOH</td>
<td>10 mol%</td>
<td>20 mol%</td>
<td>1 h</td>
<td>99</td>
</tr>
<tr>
<td>6</td>
<td>MeOH</td>
<td>5 mol%</td>
<td>10 mol%</td>
<td>1 h</td>
<td>99</td>
</tr>
<tr>
<td>7</td>
<td>EtOH</td>
<td>5 mol%</td>
<td>10 mol%</td>
<td>1 h</td>
<td>88</td>
</tr>
<tr>
<td>8</td>
<td>t-BuOH</td>
<td>5 mol%</td>
<td>10 mol%</td>
<td>2 h</td>
<td>99</td>
</tr>
</tbody>
</table>

266
ヒドロホウ素化で9としたのち、生成した水酸基数がTES基で保護後、Grignard反応をおこないメチルケトン11へ導いた。メチルケトンのα位に水酸基数を導入7後、得られた12をメチルリチウムで処理すると1:1ジアステレオマー混合物として13が得られた。最後にジオール部のカーボネート化および側鎖部のβ-ケトエステルへの変換をおこない16を調製した。

調製したジアステレオマー混合物16に対し、Tsuji–Trost反応を応用したBC環連続環化反応を検討した。Table 2 まず、触媒にPd(OAc)$_2$を用い、最適な溶媒を調査した結果、tolueneやTHF等の低極性溶媒を使用した場合、反応が全く進行しなかったが、非プロトン性極性溶媒のDMSOやDMFを使用すると少量の連続環化体17とともにβ-ケトエステルがO-アルキル化した20が主生成物として得られた。興味深いことにプロトン性溶媒のEtOHを使用するとO-アルキル化体20は生成せず、17が48%と7員環ケトン19が32%の収率で得られた。しかし、得られた連続環化体17は目的物の立体異性体であり、目的物18は得られなかった。（Fig. 1）

| Table 2. Solvent effect on tandem cyclization. |
|---|---|---|---|---|
| Entry | Solvent | 17 | 18 | 19 | 20 |
| 1 | toluene | - | - | - | - |
| 2 | THF | - | - | - | - |
| 3 | dioxane | - | - | - | - |
| 4 | CH$_3$CN | - | - | - | - |
| 5 | DMSO | trace | - | - | - |
| 6 | DMF | 8% | - | - | - |
| 7 | EtOH | 48% | - | - | - |

反応を詳細に解析するため、16のジアステレオマー混合物をカラムクロマトグラフィーで分離し、同様の条件下反応させた。その結果、(9R*)-16aからは連続環化体17が得られたのに対し、望む立体化学を有する(9S*)-16bからは7員環ケトン19のみが得られ、連続環化反応が全く進行していないことがわかった。（Scheme 4）

Scheme 4. Difference of Tsuji–Trost reaction between 16a and 16b.
そこで、望む立体化学を有する 16b に対して溶媒と塩基の影響および配位子効果を詳細に調査した。まず、種々の配位子を使用し反応をおこなったところ、n-Bu₃P や Cy₃P など単座配位子を使用した場合には、7 員環化合物 19 が主生成物として得られたのに対し、二座配位子である DPPB や (R)-BINAP を使用すると低収率ながら初めて望む立体化学を有する連続環化体 18 が得られることがわかった。（Table 3）また、この反応において副生成物として得られた 21 は、目的物 18 が EtOH により加溶媒分解され生成すると考えられたことから、次に求核性の低い t-BuOH を使用し、反応をおこなった。（Table 4）その結果、予想通り収率は改善されたが、依然として副生成物 21 が 14%の収率で得られた。このことから Tsuji–Trost 反応後、ラクトン化が完成していないことが示唆された。（Entry 1）そこで、ラクトン化を促進させる目的で系内に塩基を加え反応をおこなったところ、塩基として 0.5 当量の LiOAc を使用すると、ラクトン化は完全に進行し、目的物 18 が 45%の収率で得られた。（Entry 2）また、塩基の当量数を増加させ、2.4 当量の LiOAc を使用すると、収率を 57%まで改善することができた。（Entry 4）最後に反応の最適化を行ったところ

Table 3. Examination of the ligand effect.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Solvent</th>
<th>18</th>
<th>19</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n-Bu₃P</td>
<td>EtOH</td>
<td>-</td>
<td>M.P.</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>t-Bu₃P</td>
<td>EtOH</td>
<td>-</td>
<td>M.P.</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Cy₃P</td>
<td>EtOH</td>
<td>-</td>
<td>M.P.</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>DPPB</td>
<td>EtOH</td>
<td>22%</td>
<td>28%</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>(R)-BINAP</td>
<td>EtOH</td>
<td>27%</td>
<td>-</td>
<td>23%</td>
</tr>
</tbody>
</table>

*M. P. = main product.

Table 4. Optimization of the reaction conditions.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Solvent</th>
<th>LiOAc</th>
<th>18</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(R)-BINAP</td>
<td>t-BuOH</td>
<td>38%</td>
<td>14%</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(R)-BINAP</td>
<td>t-BuOH</td>
<td>45%</td>
<td>-</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(R)-BINAP</td>
<td>t-BuOH</td>
<td>1.2 eq</td>
<td>48%</td>
<td>-</td>
<td>20%</td>
</tr>
<tr>
<td>4</td>
<td>(R)-BINAP</td>
<td>t-BuOH</td>
<td>2.4 eq</td>
<td>57%</td>
<td>-</td>
<td>9%</td>
</tr>
<tr>
<td>5</td>
<td>(a)-BINAP</td>
<td>t-BuOH</td>
<td>2.4 eq</td>
<td>65%</td>
<td>-</td>
<td>trace</td>
</tr>
</tbody>
</table>

Scheme 5. Conversion of the undesired 15a to the desired 15b.
ジアジフェニンの形式合成

18 の TBDPS 基を除去後、西沢–Grieco 法 9 により脱水し、30 を 3 段階 47% の収率で得た。最後に、30 の m-CPBA 酸化と NaBH₄ 還元でジオール 32 へ変換後、末端アルケンの酸化開裂および生成したヘミアセタールの酸化により Theodorakis 合成中間体 2 を合成でき、ジアジフェニンの形式合成を完了した。 (Scheme 6)

Scheme 6. Formal synthesis of jiadifenin (1).

参考文献
Formal Synthesis of Neurotrophic Jiadifenin Using Pd-catalyzed Reactions as Key Steps

Kenichi Harada, Akiko Imai, Miwa Kubo, Yoshiyasu Fukuyama

(Faculty of Pharmaceutical Sciences, Tokushima Bunri University)

A seco-prezizaane type sesquiterpene jiadifenin (1) consists of highly oxygenated cage-like tetracycle with a cyclic hemi-acetal, γ-lactone, and six stereogenic centers. In addition to its unique structure, jiadifenin was found to significantly promote neurite outgrowth in the primary cultured fetal rat cortical neurons. This bioactivity indicates that jiadifenin is a potential candidate for the treatment of neurodegenerative disorders such as Alzheimer’s disease. In this symposium, we report a formal synthesis of jiadifenin using Pd-catalyzed reactions as key steps.

Our synthetic strategy focused on application of Pd-chemistry for the construction of the jiadifenin’s ABC ring system with quaternary centers. Mizoroki–Heck reaction would be used to construct the A ring with the C-9 quaternary carbon, and a tandem Tsuji–Trost cyclization/lactonization sequence would be employed to establish the BC ring system.

A bromoester 5 was prepared from commercially available diethyl 4-oxopimelate (3) in 5 steps, and Mizoroki–Heck reaction of 5 was carried out with Pd(OAc)$_2$/(o-tol)$_3$P catalytic system. Interestingly, protic solvent such as MeOH dramatically promoted the reaction to give rise to the corresponding A ring compound 6 in 99% yield. Subsequently, a key cyclic carbonate 16 requisite for Tsuji–Trost tandem reaction was converted from 6 in several steps. This tandem cyclization was investigated under a variety of conditions such as Pd catalyst, solvent, ligand, and base. As results, aprotic solvents mainly gave rise to O-alkylated product 20, whereas protic solvents provided C-alkylation 17 toward Tsuji–Trost reaction. The use of bidentate ligand BINAP was crucial for control of the facial selectivity of oxidative addition in Tsuji–Trost reaction. Addition of LiOAc was found to accelerate the lactonization step to give the desired 18. After optimization, we were pleased to find that Pd(OAc)$_2$/(±)-BINAP and LiOAc system in t-BuOH brought about the Tsuji–Trost tandem cyclization of 16 to afford 18 in 65% yield. Finally, Theodorakis’s intermediate 2 was derived from 18 in 7 steps, thus accomplishing a formal synthesis of jiadifenin (1).